Polymorphism of the α-2a adrenoreceptor gene and aerobic power in coronary artery disease

S. Onkelinx¹, J. Defoor¹, T. Thomaes¹, R. Fagard², L. Vanhees¹

¹ Department of Rehabilitation Sciences, KULeuven
² Department of Cardiovascular Diseases, KULeuven
Variation in change of exercise capacity

- Age
- Gender
- Training frequency
- Training intensity
- Baseline exercise duration
- …

Explanation of 20pct of variation

The Caregene study

CArdiac REhabilitation and GENetics of Exercise performance and training effect

Aim:

To explore the effect of genetic variation on aerobic power and on the response to physical training in patients with coronary artery disease

Inclusion criteria:

Men or women
Biologically unrelated
AMI and/or PCI a/o CABG a/o AP, but not artificial valve or heart transplantation or ICD or other cardiac surgery
Evident exhaustion during both graded exercise tests
The Caregene study
Exercise training

- Cycling, running, arm ergometry, rowing, predominantly dynamic calisthenics and relaxation
- Duration: approximately 100 minutes/session
- Frequency: 3 exercise sessions weekly during 3 months
 \[2.27 \pm 0.47 \text{ sessions per week}\]
- Intensity: \(HR_{\text{training}} = HR_{\text{rest}} + 60\% - 90\% \ (HR_{\text{peak}} - HR_{\text{rest}}) \)
 \[79.7 \pm 10.4\%\]
The Caregene study
Clinical characteristics

- Men/Women: 839/76 (92%/8%)
- Age: 56.3 ± 9.23
- AMI: 630 (67%)
- CBG: 377 (40%)
- PCI: 470 (50%)
- Angina: 23(2%)
- β-blockers: 794(85%)
- Converting enzyme Inhibitors: 222(24%)
- Antiplatelets: 829(89%)
The Caregene study
Candidate genes

Renin Angiotensin Aldosteron System
ACE gene (insertion/deletion)
Angiotensin II type 1 receptor gene

Vascular and endothelial function
eNos (NOS3) gene

Adrenergic function
β1- adrenoreceptor gene
β2- adrenoreceptor gene

α-2a-adrenoreceptor gene

Peak Oxygen Uptake (mL/min)

- Ser49-Gly389/Ser49-Gly389 (n=45)
- Ser49-Arg389/Ser49-Gly389 (n=243)
- Ser49-Arg389/Ser49-Arg389 (n=245)
- Ser49-Gly389/Gly49-Gly389 (n=11)
- Ser49-Gly389/Gly49-Arg389 (n=129)
- Ser49-Arg389/Gly49-Arg389 (n=173)
- Gly49-Arg389/Gly49-Arg389 (n=16)

p=0.003
The Caregene study

Polymorphism of the α2a-AR gene: background

- Presynaptic inhibitory autoreceptor:
 - blood pressure, heart rate
- α2a-AR gene:
 - chromosome 10 (q24-q26)
- Dral Restriction fragment length Polymorphism in the α2a-AR gene (Hoehe 1988)*:
 - a two-allele polymorphism with bands at 6.7kb (wild type) and 6.3kb (mutation)
- Dral RFLP polymorphism in the α2a-AR gene associated with elite endurance athlete status (Wolfarth 2000)**

The CAREGENE study
Polymorphism of the α2a-AR gene: distribution

Genotype distribution in our population:

• 915 were successfully genotyped:
 – 622 (68 %) homozygous wild-type (6.7kb/6.7Kb) → Wild-type
 – 267 (29%) heterozygous (6.7kb/6.3kb)
 – 26 (3%) homozygous mutant-type (6.3kb/6.3kb) → Carriers

• Genotype distributions were in agreement with the prediction by Hardy-Weinberg equilibrium (p<0.05)
Data are presented as means. Comparisons between groups were made by means of ANCOVA. Adjusted for age, sex and height.
The Caregene study

α2a -AR gene: Aerobic power response

Data are presented as means. Comparisons between groups were made by means of ANCOVA. Adjusted for age, sex, height, baseline aerobic power, training intensity and frequency.
The Caregene study
α2a -AR gene: Conclusion

• In Caucasian patients with CAD of the CAREGENE study

 – Associated with aerobic power at baseline and after training

 – Strong association with the response to training: additional increase of 4%

• Additional explanation of 0.8 % of the variation of change in exercise capacity
Questions?

Thank you for your attention