ESC STEMI Guidelines: December 2008

Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation

The Task Force on the management of ST-segment elevation myocardial infarction of the European Society of Cardiology:

Authors/Task Force Members: Frans Van de Werf, Chairperson (Belgium)*, Jeroen Bax (The Netherlands), Amadeo Betriu (Spain), Carina Blomstrom-Lundqvist (Sweden), Filippo Crea (Italy), Volkmar Falk (Germany), Gerasimos Filippatos (Greece), Keith Fox (UK), Kurt Huber (Austria), Adnan Kastrati (Germany), Annika Rosengren (Sweden), P. Gabriel Steg (France), Marco Tubaro (Italy), Freek Verheugt (The Netherlands), Franz Weidinger (Austria), Michael Weis (Germany)

ESC Committee for Practice Guidelines (CPG): Alec Yahanian, Chairperson (France), John Camm (UK), Raffaele De Caterina (Italy), Veronica Dean (France), Kenneth Dickstein (Norway), Gerasimos Filippatos (Greece), Christian Funck-Brentano (France), Irene Helleman (The Netherlands), Steen Dalby Kristensen (Denmark), Keith McGregor (France), Udo Sechtem (Germany), Sigmund Silber (Germany), Michal Tendera (Poland), Petr Widimsky (Czech Republic), José Luis Zamorano (Spain)

Document Reviewers: Sigmund Silber (CPG Review Coordinator) (Germany), Frank V. Aguirre (USA), Nawwar Al-Attar (France), Eduardo Alegria (Spain), Felicita Andreotti (Italy), Werner Benzer (Austria), Ole Breithardt (Germany), Nicholas Danchin (France), Carlo Di Mario (UK), Dariusz Dudek (Poland), Dietrich Gulba (Germany), Sigrun Halvorsen (Norway), Philipp Kaufmann (Switzerland), Ran Kornowski (Israel), Gregory Y. H. Lip (UK), Frans Rutten (The Netherlands)
Reperfusion Therapy: Fibrinolytic Therapy

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the absence of contraindications and if primary PCI cannot be performed within the recommended time</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>A fibrin-specific agent should be given</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Pre-hospital initiation of fibrinolytic therapy</td>
<td>IIa</td>
<td>B</td>
</tr>
</tbody>
</table>
Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated in all pts with chest pain/discomfort of < 12 h and with persistent ST-segment elevation or (presumed) new LBBB</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Should be considered if there is clinical and/or ECG evidence of ongoing ischaemia if symptoms started > 12 h before</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Reperfusion (PCI) in stable pts presenting > 12 h to 24 h after symptom onset</td>
<td>IIb</td>
<td>B</td>
</tr>
<tr>
<td>PCI of totally occluded infarct artery in stable pts > 24 h after symptom onset without signs of ischaemia</td>
<td>III</td>
<td>B</td>
</tr>
</tbody>
</table>
ESC 2008 STEMI Guidelines
Reperfusion Strategies

- **PCI-capable hospital**: primary PCI
- **Ambulance**: PCI < 2h possible
 - PCI < 2h not possible
- **Non-PCI-capable hospital**: pre-, in-hospital fibrinolysis
 - failed
 - successful

- **Time limits**
 - 2h
 - 12h
 - 24h

- **Angiography**
 - $^\#$ If PCI is not possible < 2 h of FMC, start fibrinolytic therapy as soon as possible.
 - $^\circ$ Not earlier than 3 h after start fibrinolysis
 - $^\circ$ 24/7 service

- **First Medical Contact (FMC)**

Time FMC to first balloon inflation must be shorter than 90 min in patients presenting early (< 2 h after symptom onset), with large amount of viable myocardium and low risk of bleeding.
The Importance of Time to Treatment

A Meta-analysis of 50,246 Pts

in placebo controlled trials of Lytic Therapy

Myocardial Reperfusion by PPCI assessed by CMR

Time to reperfusion from symptom onset: <90 90-150 150-360 <360 min

Francone et al. JACC 2009;54:2145
30-Day Mortality of STEMI Patients by % Treated Within Recommended Delays and % Receiving Reperfusion With PPCI

PCI vs. Lysis: Importance of Presentation Delay and Baseline Characteristics

Data from NRMI 2, 3 and 4 Registries

<table>
<thead>
<tr>
<th>PCI and Fibrinolytic Mortality Are Equal (Min)</th>
<th>NonAnt MI 65+ YRS</th>
<th>Ant MI 65+ YRS</th>
<th>NonAnt MI <65 YRS</th>
<th>Ant MI <65 YRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI Related Delay (DB-DN) 0-120</td>
<td>20.424</td>
<td>168</td>
<td>58</td>
<td>40</td>
</tr>
<tr>
<td>Prehospital Delay (min) 0-120</td>
<td>10.614</td>
<td>179</td>
<td>148</td>
<td>103</td>
</tr>
<tr>
<td>Prehospital Delay (min) 121+</td>
<td>9.812</td>
<td>107</td>
<td>16.119</td>
<td>43</td>
</tr>
<tr>
<td>Prehospital Delay (min) 180</td>
<td>41.774</td>
<td></td>
<td>19.517</td>
<td></td>
</tr>
</tbody>
</table>

Pinto et al. Circulation, 2006

Circulation 2009;120;2271-2306; originally published online Nov 18, 2009;

DOI: 10.1161/CIRCULATIONAHA.109.192663

Circulation is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 75214

Copyright © 2009 American Heart Association. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539
Transport of Patients with STEMI and Initial Reperfusion Treatment

EMS Transport

Onset of symptoms of STEMI → Call 9-1-1

EMS on scene
- Encourage 12-lead ECGs
- Consider pre-hospital fibrinolytic if capable and EMS–to–needle within 30 min

EMS Transport

Pre-hospital fibrinolysis
EMS–to–needle ≤ 30 min
EMS transport
EMS-to-balloon ≤ 90 min

Patient self-transport
Hospital door-to-balloon ≤ 90 min

GOALS

5 min 8 min
Patient EMS

Dispatch 1 min

“Golden Hour” = 1st 60 min
Total ischaemic time: within 120 min

Hospital fibrinolysis:
Door–to–needle ≤ 30 min

Not PCI capable

Inter-hospital transfer

PCI capable

The Real World
Cumulative Time-to-Balloon Intervals in OTTAWA

A First Hospital Door-to-Balloon Time

Proportion of Patients (%)

Minutes

Field transfers
Interhospital transfers

P < 0.001

B ECG-to-Balloon Time

Proportion of Patients (%)

Minutes

Field transfers
Interhospital transfers

P < 0.001

C Symptom-Onset-to-Balloon Time

Proportion of Patients (%)

Minutes

Field transfers
Interhospital transfers

P < 0.001
Time delays in Transfer Patients for Primary PCI

Nallamothu et al. Circulation, 2005
MINNESOTA Study: First Door-to-Balloon

Zone 1: < 60 miles
Zone 2: 60-210 miles
MAYO STUDY: Door-to-balloon and door-to-needle times for group A (PCI-hospital), group B (regional hospital transfer for PCI), and group C (regional hospital fibrinolysis).
Mortality Estimates for 6209 Danish Patients With STEMI Treated With Primary PCI

Two Different Strategies

- **Facilitated PCI:** pharmacological reperfusion treatment delivered prior to a planned PCI in order to bridge the PCI-related time delay.

- **Pharmacoinvasive strategy:** intravenous fibrinolytic treatment, followed by coronary angiography on an urgent basis if lytic therapy failed (rescue PCI) or later to determine long-term treatment (PCI, CABG, medical).
A Conservative vs Invasive Transfer Approach

DANAMI-2:
benefits of PPCI even in transfer patients

- Rescue PCI: 1.8%
- Any Revasc: 17%

CAPTIM:
lower mortality with PHT up to 5 years

- Rescue PCI: 26%
- Any Revasc: 72%

DANAMI-2: Results

- Lytic
- Primary PCI

- Death: P=0.35
- Recurrent MI: P<0.001
- Stroke: P=0.15

CAPTIM: 30-day & one-year result

- P=NS

- 30-d: PHT vs PCI
- One year: PHT vs PCI

N Engl J Med 2003; 349: 733-42
Comparison of key results from DANAMI-2 and CAPTIM

<table>
<thead>
<tr>
<th>Results</th>
<th>DANAMI-2 Trial</th>
<th>CAPTIM Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In-hospital fibrinolysis $(n = 562)$</td>
<td>Transfer to PPCI $(n = 567)$</td>
</tr>
<tr>
<td>Median age (years)</td>
<td>64</td>
<td>62</td>
</tr>
<tr>
<td>Median time to fibrinolysis (min)</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>Median time to PCI (min)</td>
<td></td>
<td>224</td>
</tr>
<tr>
<td>Rescue PCI (%)</td>
<td>1.8</td>
<td>26</td>
</tr>
<tr>
<td>Reinfarction (%)</td>
<td>6.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Elective revascularization‡ (%)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>30-day all-cause mortality (%)</td>
<td>8.5</td>
<td>6.5</td>
</tr>
<tr>
<td>All-cause mortality at follow-up* (%)</td>
<td>33.3</td>
<td>26.7</td>
</tr>
<tr>
<td>Cardiac mortality at follow-up* (%)</td>
<td>16.4</td>
<td>12.8</td>
</tr>
</tbody>
</table>

*In the first 30-days. ‡Follow-up was 5 years in the CAPTIM Trial and 7.8 years in the DANAMI-2 Trial. Abbreviations: CAPTIM, comparison of primary angioplasty and pre-hospital fibrinolysis in acute myocardial infarction; DANAMI, Danish Acute Myocardial Infarction; NA, not applicable; PCI, percutaneous coronary intervention; PPCI, primary percutaneous coronary intervention.
Zone 1 Protocol
- Aspirin 325 mg
- Clopidogrel 600mg
- UFH
- Beta-blocker
- PCI

Red-Zone II (90-120mins)
Blue-Zone I (<90 mins)
Protocol focus:
- Simple
- Fast
- Reduce variability

Red-Zone II (90-120mins)
Blue-Zone I (<90 mins)

Zone 2 Protocol
- Aspirin 325 mg
- Clopidogrel 600mg
- UFH
- TNK ½ dose
- Beta-blocker
- PCI
Time to reperfusion segments (min)

<table>
<thead>
<tr>
<th>Time Segment</th>
<th>PCI Hosp</th>
<th>Zone 1 (≤60 miles)</th>
<th>Zone 2 (60-210 miles)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms to hospital</td>
<td>103 (60, 232)</td>
<td>88 (47, 195)</td>
<td>88 (44, 185)</td>
<td>0.008/ 0.002</td>
</tr>
<tr>
<td>In door – out door</td>
<td>NA</td>
<td>49 (36, 67)</td>
<td>61 (48, 83)</td>
<td></td>
</tr>
<tr>
<td>Door to fibrinolytic</td>
<td>NA</td>
<td>NA</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>NA</td>
<td>22 (16, 31)</td>
<td>35 (26, 48)</td>
<td></td>
</tr>
<tr>
<td>Door to balloon</td>
<td>64 (44, 84)</td>
<td>95 (81, 117)</td>
<td>121 (101, 151)</td>
<td><0.001/ <0.001</td>
</tr>
<tr>
<td>Total reperfusion</td>
<td>171 (118, 318)</td>
<td>195 (142, 305)</td>
<td>218 (165, 329)</td>
<td><0.001/ <0.001</td>
</tr>
</tbody>
</table>
Patients presenting between 2003 and 2009

Total STEMI
N=2,228*

- ANW
 N=521
 - PPCI
 N=521
 - PPCI
 N=1,485
 - PPCI
 N=964
 - PhInv
 N=28

- Zone 1
 N=992
 - PPCI
 N=144
 - PhInv
 N=571

- Zone 2
 N=715
 - PPCI
 N=144
 - PhInv
 N=599

*Excluding no culprits. Patients presented between 2003 and 2009
Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>PPCI</th>
<th>Ph-Inv</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>62.4 ± 14.1</td>
<td>63.3 ± 13.2</td>
<td>0.18</td>
</tr>
<tr>
<td>Patients ≥ 75 yrs</td>
<td>343 (23.1)</td>
<td>138 (24.0)</td>
<td>0.98</td>
</tr>
<tr>
<td>Male</td>
<td>1088 (73.3)</td>
<td>452 (75.5)</td>
<td>0.30</td>
</tr>
<tr>
<td>Hyperlipidaemia</td>
<td>820 (57.1)</td>
<td>327 (56.8)</td>
<td>0.88</td>
</tr>
<tr>
<td>Hypertension</td>
<td>850 (57.6)</td>
<td>329 (55.1)</td>
<td>0.29</td>
</tr>
<tr>
<td>Diabetes</td>
<td>233 (15.8)</td>
<td>101 (16.9)</td>
<td>0.53</td>
</tr>
<tr>
<td>Current smoking</td>
<td>593 (40.3)</td>
<td>242 (40.7)</td>
<td>0.87</td>
</tr>
<tr>
<td>History of MI</td>
<td>276 (18.7)</td>
<td>114 (10.0)</td>
<td>0.84</td>
</tr>
<tr>
<td>History of CABG</td>
<td>91 (6.2)</td>
<td>33 (5.5)</td>
<td>0.58</td>
</tr>
<tr>
<td>History of PCI</td>
<td>297 (20.1)</td>
<td>107 (17.9)</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Clinical characteristics

<table>
<thead>
<tr>
<th></th>
<th>PPCI</th>
<th>Ph-Inv</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiogenic shock before PCI</td>
<td>155 (10.4)</td>
<td>49 (8.2)</td>
<td>0.12</td>
</tr>
<tr>
<td>Cardiac arrest before PCI</td>
<td>137 (9.2)</td>
<td>39 (6.5)</td>
<td>0.044</td>
</tr>
<tr>
<td>Out of hosp cardiac arrest</td>
<td>79 (5.3)</td>
<td>24 (4.0)</td>
<td>0.21</td>
</tr>
<tr>
<td>Anterior MI</td>
<td>499 (33.8)</td>
<td>211 (35.4)</td>
<td>0.48</td>
</tr>
<tr>
<td>Killip Class 2-4</td>
<td>223 (15.0)</td>
<td>86 (14.4)</td>
<td>0.70</td>
</tr>
<tr>
<td>LBBB</td>
<td>38 (2.6)</td>
<td>9 (1.5)</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Pre-PCI patency

P < 0.001

Percentage of patients

TIMI 2/3

- PPCI: 37.1%
- Ph-Inv: 72.7%

P < 0.001
Results

<table>
<thead>
<tr>
<th></th>
<th>PCI Hosp PPCI N=496</th>
<th>Zone 1 (<60) PPCI N=1,005</th>
<th>Zone 2 (60-210) Ph-Inv N=606</th>
<th>P value PCI Hosp vs. Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>D2B time</td>
<td>64 (44, 84)</td>
<td>95 (81, 117)</td>
<td>123 (102, 151)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mortality hospital</td>
<td>5.0%</td>
<td>4.4%</td>
<td>5.5%</td>
<td>0.76</td>
</tr>
<tr>
<td>Mortality 30 day</td>
<td>5.7%</td>
<td>5.2%</td>
<td>5.8%</td>
<td>0.93</td>
</tr>
<tr>
<td>Re-ischaemia 30 days</td>
<td>3.0%</td>
<td>0.9%</td>
<td>1.0%</td>
<td>0.014</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>1.4%</td>
<td>0.7%</td>
<td>1.2%</td>
<td>0.71</td>
</tr>
<tr>
<td>Stroke 30 days</td>
<td>1.2%</td>
<td>0.5%</td>
<td>1.0%</td>
<td>0.73</td>
</tr>
</tbody>
</table>
Kaplan-Meier survival

One-year survival

Days since presentation

Survival probability

P=NS

PPCI
Ph-Inv
STrategic Reperfusion Early After MI

Patients presenting with STEMI <3 hrs from onset of symptoms that cannot reliably undergo primary PCI <60 min

Group A

<75 years: TNK
Routine ASA

- Clopidogrel: LD 300 mg + 75 mg QD
- Enoxaparin: 30 mg IV + 1 mg/kg SC Q12h

ECG at 90 min: ST resolution ≥ 50%

YES

Diagnostic angiography + PCI / stent, if indicated > 6 hrs / < 24 hrs

NO

Rescue angiography + PCI / stent immediately

≥ 75 years: 1/2TNK
Routine ASA

- Clopidogrel: 75 mg QD
- Enoxaparin: 0.75 mg/kg SC Q12h

Group B

ASA, No lytic

Antiplatelet and anticoagulation treatment according to local standards

Standard angiography + PCI / stent immediately
Class IIa. It is reasonable for high-risk patients who receive fibrinolytic therapy as primary reperfusion therapy at a non–PCI-capable facility to be transferred as soon as possible to a PCI-capable facility where PCI can be performed either when needed or as a pharmacoinvasive strategy. Consideration should be given to initiating a preparatory antithrombotic (anticoagulant plus antiplatelet) regimen before and during patient transfer to the catheterization laboratory. *(Level of Evidence: B)*
Class IIb. Patients who are not at high risk who receive fibrinolytic therapy as primary reperfusion therapy at a non–PCI-capable facility may be considered for transfer as soon as possible to a PCI-capable facility where PCI can be performed either when needed or as a pharmacoinvasive strategy. Consideration should be given to initiating a preparatory antithrombotic (anticoagulant plus antiplatelet) regimen before and during patient transfer to the catheterization laboratory. (Level of Evidence: C)
Polls at the TCT Website (October 12, 2010)

Poll
Which therapy for STEMI patients would you like to learn more about?

- Pharmacologic therapy: 20%
- Aspiration thrombectomy: 38%
- Out-of-hospital reperfusion: 12%
- DES as standard of care: 30%

Poll
Fibrinolytic therapy should be given to STEMI patients with:

- Transfer delays up to 60 min: 22%
- Transfer delays up to 90 min: 31%
- Transfer delays up to 120 min: 32%
- Always: 6%
- Never: 9%

Poll
Which strategies would you like to compare for STEMI patients?

- Facilitated PCI (Y/N): 22%
- Thrombolysis vs. primary PCI: 20%
- DES vs. BMS: 39%
- Heparin vs. Bivalirudin: 19%
Conclusions

The Window for Fibrinolysis

- “Outside the window of primary PCI”
- Whether it should be given up to 12h after onset of infarction is debatable (if primary PCI is not available)
- Inter-hospital transport of STEMI patients for primary PCI remains major issue
Mortality Rates in Control and Treatment Groups for Each Prehospital Thrombolytic Trial

Recommended Logistics

- **Pre-hospital triage/care:**
 - EMS
 - unique telephone number
 - tele-consultation
 - Ambulance
 - 12-ECG recorder/defibrillator
 - staff able to provide basic and advanced life support

- **Networks:**
 - implementation of a network of hospitals with different levels of technology connected by an efficient ambulance service using the same protocol

- **Targets:**
 - < 10 min ECG transmission
 - < 5 min tele-consultation
 - < 120 min to first balloon inflation
 - < 30 min start fibrinolytic therapy
Importance of *PCI-related Delay*
Data from Randomized Trials

Betriu and Masotti
Mortality equipose: **110 min**
Am J Card 2005;95:100-101

Nallomothu, Antman and Bates
Mortality equipose: **62 min**
Am J Cardiol 2004;94:772-774

Nallomothu, Antman and Bates
Mortality equipose: **>170 min**
Am J Cardiol 2004;94:772-774
PCI vs. Lysis: Importance of *PCI-related Delay* in NRMI 2,3,4 Registries

Odds of Death with Fibrinolysis

Pinto et al. Circulation, 2006
Pre-hospital Management

Symptoms compatible with STEMI

EMS: Emergency Medical System; STEMI: Acute ST-segment Elevation Myocardial Infarction; GP: General Practitioner; PCI: percutaneous coronary intervention

Thick arrows: preferred patient flow; dotted line: to be avoided

EMS: Pre-hospital diagnosis, triage, care
GP/cardiologist: Self-decision
Ambulance: Private transportation

PCI-capable* hospital
Transfer if PCI possible < 2h

Non-PCI-capable hospital

*PCI-capable-hospital = 7/24 service!
Mortality and the Use of Fibrinolytics According to Age

CAPTIM: 5 Year Survival
Prehospital Thrombolysis vs Primary PCI

<2 hrs
HR 0.50 (95% CI, 0.25–0.97); P = 0.04

>2 hrs

Rate of Ischemic Events at the Available Follow-up

| Study | Time from Fibrinolysis to Routine Early PCI (hr) | Rate
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPITAL-AMI</td>
<td>1.6</td>
<td>11.6</td>
</tr>
<tr>
<td>CARESS-in-AMI</td>
<td>2.3</td>
<td>4.4</td>
</tr>
<tr>
<td>SIAM-III</td>
<td>3.7</td>
<td>25.6</td>
</tr>
<tr>
<td>TRANSFER-AMI</td>
<td>3.9</td>
<td>17.1</td>
</tr>
<tr>
<td>GRACIA-1</td>
<td>16.7</td>
<td>9.3</td>
</tr>
<tr>
<td>NORDISTEMI</td>
<td>2.7</td>
<td>10.0</td>
</tr>
</tbody>
</table>
Impact of PCI-related delay on Mortality Benefit from Primary PCI

All patients 180 min

Medium risk 92 min

Low risk no relationship

High risk 131 min

Reperfusion Therapy: Important Time Lines

Onset of STEMI

FMC: First Medical Contact or First Diagnostic ECG

Start lytic

Reperfusion

Sheath

Patient-dependent

Organization-dependent

"PCI-related delay"

Balloon Sheath

FMC: First Medical Contact or First Diagnostic ECG
Polls at the TCT Website

Poll 1: Which therapy for STEMI patients would you like to learn more about?
- Pharmacologic therapy: 20%
- Aspiration thrombectomy: 38%
- Out-of-hospital reperfusion: 12%
- DES as standard of care: 30%

Poll 2: Fibrinolytic therapy should be given to STEMI patients with:
- Transfer delays up to 60 min: 22%
- Transfer delays up to 90 min: 31%
- Transfer delays up to 120 min: 32%
- Always: 6%
- Never: 9%

Poll 3: Which strategies would you like to compare for STEMI patients?
- Facilitated PCI (Y/N): 22%
- Thrombolysis vs. primary PCI: 20%
- DES vs. BMS: 39%
- Heparin vs. Bivalirudin: 19%
Absolute Reduction in 35-Day Mortality Versus Delay From Symptom Onset to Randomization in Patients With ST-Segment Elevation or LBBB

Relationship Between Myocardial Salvage and Survival

Mortality reduction (%)

Extent of salvage (% of area at risk)

Hours

% 0 20 40 60 80 100

Modifying factors
- Collaterals
- Ischemic preconditioning
- MVO₂

Treatment objectives

Time to treatment is critical

Opening the IRA (PCI > lysis)

Gersh B. JAMA 2005