PCR Coronary Physiology in the Cathlab

DEFER, SYNTAX, COURAGE and FAME's

A Synthesis

W. Wijns, Aalst (B)

What is your conclusion from ...

DEFER

- ► FAME 1
- ► SYNTAX

How does this trial influence your practice ...

DEFER Study: Impact on Symptoms

% of asymptomatic patients

When FFR > 0.75 Death and MI rate is < 1% per year

Pijls et al, JACC 2007;49:2105-1.

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation

www.escardio.org/guidelines

What is your conclusion from ...

DEFER FAME 1 SYNTAX

How does this trial influence your practice ...

The FAME study was designed to *reflect daily practice* in performing PCI in patients *with multivessel disease*

Inclusion criteria:

- ALL patients with multivessel disease
- At least 2 stenoses ≥ 50% in 2 or 3 major epicardial coronary artery disease, amenable for stenting

Exclusion criteria:

- Left main disease or previous bypass surgery
- Acute STEMI
- Extremely tortuous or calcified coronary arteries

Note: patients with previous PCI were not excluded

FAME 1 study: Functional Class at 1 Year

	ANGIO-group	FFR-group	Pavaluo
	N=496	N=509	P-value
Patients without event and free from angina	326 (68)	360 (73)	0.07
Patients free from angina, No. (%)	374 (78)	399 (81)	0.20
Number of anti-anginal meds, No.	1.2 ± 0.7	1.2 ± 0.8	0.48
EQ-5D visual analogue scale	74 ± 16	75 ± 16	0.65

FAME 1 study: Adverse Events at 1 year >

Events at 1 year, No (%)	ANGIO-group N=496	FFR-group N=509	P-value
Death, MI, CABG, or repeat-PCI	91 (18.4)	67 (13.2)	0.02
Death	15 (3.0)	9 (1.8)	0.19
Death or myocardial infarction	55 (11.1)	37 (7.3)	0.04
CABG or repeat PCI	47 (9.5)	33 (6.5)	0.08
Total no. of MACE	113	76	0.02
Myocardial infarction, specified			
All myocardial infarctions	43 (8.7)	29 (5.7)	0.07
Small periprocedural CK-MB 3-5 x N	16	12	
Other infarctions ("late or large")	27	17	

What is your conclusion from ...

How does this trial influence your practice ...

Linear Increase in MACCE by Number of Stents in the SYNTAX Trial

therefore, counted in the $\leq 1d$ and 2-30d intervals but only once in the total.

SYNTAX 4-year Outcomes • EACTS 2011 • Serruys • October 2011 • Slide 19

We conclude that ...

Dual targeting (anatomy + function) is symptomatically equivalent and prognostically superior to single targeting (angio only)

Less is More (DEFER, FAME 1) More is Less (SYNTAX)

What is your conclusion from ...

How does this trial influence your practice ...

COURAGE Trial

Clinical Outcome Utilising Revascularisation and Aggressive DruG Evalution

Multicenter randomised trial testing the following hypothesis:

- the best clinical outcome can be achieved by combining PCI with intensive medical therapy
- primary endpoint: death, MI, ACS (Tn+)
- N = 2287 pts: medical vs PCI + medical

COURAGE: Study Overview

- 2287 patients randomised (after angiography) between BMS plus drug therapy vs. drug therapy alone
- The composite primary end point was all-cause death or acute MI
- Duration 2.5 7 years with on average 5 year follow-up

cumulative event rate	PCI	Med Rx
Death or MI	19.0%	18.5%
Death, MI, stroke	20.0%	19.5%
Hospitalization for ACS	12.4%	11.8%
МІ	13.2%	12.3%

Trial conclusion

PCI did not reduce the risk of death or MI in this patient population

What is your conclusion from ...

COURAGEFAME 2

How does this trial influence your practice ...

Study design of FAME II randomised clinical trial

Stable Patients scheduled for one-, two- or three vessel DES stenting

Primary Endpoint at 2 years: Death + MI + Unplanned hospitalisation leading to urgent revascularisation

Follow-up after 1, 6 months, 1, 2, 3, 4 and 5 years

www.escardio.org/guidelines

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation

Rate of Any Revascularisation

#esc2012

www.escardio.org

PCR Coronary Physiology in the Cathlab

DEFER, SYNTAX, COURAGE and FAME's

Let's attempt a Synthesis

W. Wijns, Aalst (B)

Repeating the second se

A-A Fassa et al. Eur H J 2013; ahead of print

Evidence basis for PCI vs. OMT

Evidence for benefit

If moderate / large ischemia

Evidence for lack of benefit

in the absence of ischemia

1997: ACIP trial
2003: Nuclear imaging studies
2008: Nuclear substudy COURAGE
2009: Substudy of BARI 2 D
2012: FAME 2 randomised trial

1998: Nuclear imaging studies
2005: Besançon randomised trial*
2007: Defer randomised trial
2010: FAME 1 randomised trial

Revascularisation versus Medical Therapy after Stress SPECT: Survival Analysis

Figure 4. Log hazard ratio for revascularization (Revasc) vs medical therapy (Medical Rx) as a function of % myocardium ischemic based on final Cox proportional hazards model. Model, *P*<0.0001; interaction, *P*=0.0305.

These two lines intersect at a value of ~ 10% of ischaemic myocardium, above which the survival benefit for revascularization over medical therapy increases as a function of increasing amounts of inducible ischemia.

Hachamovitch et al. Circulation 2003;107:2900-6.

www.escardio.org/guidelines

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation

Indications for revascularisation in stable angina or silent ischaemia

	Subset of CAD by anatomy	Class	Level
For symptoms	Any stenosis > 50% with limiting angina or angina equivalent, unresponsive to OMT	I.	Α
	Dyspnoea/CHF and > 10% LV ischaema/viability supplied by > 50% stenotic artery	lla	В
	No limit symptoms with OMT	Ш	С

	Subset of CAD by anatomy	Class	Level
For prognosis	Left main > 50%*	l I	Α
	Any proximal LAD > 50%*	l I	Α
	2VD or 3VD with impaired LV function*	I.	В
	Proven large area of ischaemia (> 10% LV)	L.	В
	Single remaining patent vessel > 50% stenosis*	L.	С
	1VD without proximal LAD and without > 10% ischaomia	III	А

^f With documented ischaemia or Fractional Flow Reserve (FFR) < 0.80 for % diameter stenosis by angiography between 50 and 90 %

EUROPEAN SOCIETY O

www.escardio.org/guidelines

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation Practical decision tree for the Management of patients with stable CAD Two steps approach

1. Is there an indication for revascularisation on top of OMT? For symptomatic and/or prognostic reasons?

2. If so, which is more appropriate: CABG or PCI?

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation

Watch for ...

New ESC Guidelines on Stable Angina (september 2013)

Upcoming ESC Guidelines on Myocardial Revascularization (2014)

Ongoing ISCHEMIA trial

¹CCTA will be performed in all patients with eGFR <u>>60 mL/min</u> ²Exclude patients with LM disease or no obstructive disease ³OMT=Optimal medical therapy

- Angiographic guidance to revascularization results in inappropriate intervention in ~50% of cases
- Revascularization will only improve prognosis in patients with significant risk (ischemic burden)
- Indications for OMT or OMT + revascularization should be based on combined anatomic and functional evaluation
- Diagnostic value of FFR has reached the highest level of evidence (class I A recommendation) but remains poorly adopted

PCR

Disclosures for William Wijns Cardiovascular Center Aalst, Belgium

Consulting Fees: on my behalf go to the Cardiovascular Research Center Aalst

Contracted Research between the Cardiovascular Research Center Aalst and several pharmaceutical and device companies, incl. St Jude and Volcano

Ownership Interest: Cardio³BioSciences, biotechnology start-up on regenerative medicine

Chairman of PCR, Co-Chairman of EuroPCR and Africa PCR

► ISCHEMIA

- ► FAME 2
- COURAGE
- ► SYNTAX
- ► FAME 1
- DEFER

euro

PCR

Ν cost 325 1.005 1.800 100K +2.287 691 8.800 90K+

Appropriate ness of elective PCI for Appropriate ness of elective ped while stable CAD is being challenged wing is life-saving stable CAD is cap is life-saving stable CAD acute CAD is life-saving **Clinical Indications for**

Ramcharitar et al, EuroIntervention 2008;4:429-41

Prognostic Value of Stress 99mTc-sestamibi Perfusion Imaging

Average Annual Hard Events (Death or MI) in > 12000 Patients

Iskander S, Iskandrian A E JACC 1998

Proximal LAD Stenoses

O. Muller et al. JACC CV Interv 2010

What is the Next? Suggested Randomized Study, FAME III

Stable Patients with Positive FFR (<0.80), 2-3 Vessel Disease

Primary Endpoint at 2 years: Death + MI + Stroke

PCR Does post-PCI FFR value predict outcome?

FFR Post Stent Registry: 750 patients post BMS

Pijls N.H.J. et al. , Circulation 2002

Proportion of Functionally Significant Stenoses in Patients with 3- or 2- Vessel Disease by Angiography

Tonino P et al. *JACC* 2010

FFR NSTE ACS (Culprit + Non Culprit Vessel)

Comparison of MACE in FAME patients with and without ACS

Tonino et al, J Am Coll Cardiol 2011 (submitted)

Evidence basis for myocardial revascularisation vs. Optimal Medical Therapy

Several meta-analyses since 2000

2000	Bucher
2004	Brener
2005	Hannan
2005	Katritsis
2008	Hannan
2008	Schomig
2009	Hlatky
2009	Trikalinos
2009	Jeremias

- Survival benefit from CABG vs OMT only HR 0.62 (0.50 – 0.77)
- Survival benefit from PCI vs OMT only HR 0.82 (0.68 – 0.99)

Jeremias. Am J Med. 2009;122:152-61.

www.escardio.org/guidelines

Joint 2010 ESC - EACTS Guidelines on Myocardial Revascularisation