European Society of Cardiology Heart Failure Annual Meeting

Highlights Session: Heart Failure with Preserved Ejection fraction

Scott D. Solomon, MD Professor of Medicine Harvard University Director, Noninvasive Cardiology Brigham and Women's Hospital Boston, MA

DECLARATION OF INTEREST

- Consulting/Royalties/Owner/ Stockholder of a healthcare company
- Research contracts

HFpEF 2013

- Poor animal models
- Limited understanding of pathophysiology
- Heterogeneous Disorder
- Limited consensus in the HF community on etiology, diagnosis or treatment
- Can't agree on a name
- Anecdote-Based Medicine

2012-2013: An Important year for HFpEF

• ESC 2012

- PARAMOUNT (LCZ696) presented
- ALDO-DHF (Spironolactone) Presented

• ACC 2013

RELAX (Sildenafil) presented

• AHA 2013

TOPCAT to be presented

• Q4 2013 – PARAGON-HF outcomes trial starting

Studies in HFpEF at ESC-HF

- Epidemiology
- Pathophysiology
- Diagnosis
- Cardiac Structure and Function
- Therapy

EPIDEMIOLOGY

SURVIVAL IN AMBULATORY HEART FAILURE PATIENTS WITH PRESERVED EJECTION FRACTION, 1999-2011

<u>Malcolm Arnold¹</u>, Peter Liu², Marie-Hélène LeBlanc³, Jonathan Howlett4, Andrew Ignaszewski⁵, Annemarie Kaan⁵, Margaret Edmonds⁵, Marilyn Winkler⁶, Pamela Luehr⁷, Estrellita Estrella-Holder⁸ *on behalf of all the nurses, dietitians, allied health care providers, and physicians in the CHFN*

10,965 ambulatory HF patients with a documented LVEF

- Distribution of NYHA class similar in HFpEF and HFrEF
- Prevalence of CAD slightly lower in HFpEF
- Prelalence of atrial fibrillation slightly higher in HFpEF

NATIONAL CHFN DATA HEART FAILURE and LVEF

- Preserved LVEF did not confer benefit in survival.
- Similar overall mortality in HFpEF and HFrEF patients
- Findings are similar to previously reported by Olmstead County and Toronto registry, but different from clinical trials

Recent prior heart failure hospitalization is associated with increased risk of clinical events in patients with reduced and preserved ejection fraction in the Candesartan in Heart Failure: Assessment of Reduction in Mortality and morbidity (CHARM) trials

Natalie Bello¹, Akshay S. Desai¹, John J.V. McMurray², Christopher Granger³, Salim Yusuf⁴, Karl Swedberg⁵, Marc A. Pfeffer¹, Scott D. Solomon¹

- Risk of subsequent death or HF Hospitalization is greatest when the time from the last hospitalization is shortest
- These findings have implications for clinical trials

PATHOPHYSIOLOGY

Decreased left ventricular capacitance is associated with a titin isoform shift and reduced titin phosphorylation in a porcine model of early heart failure with preserved ejection fraction.

M. Schwarzl¹, S. Seiler¹, A. Alogna¹, N. Hamdani²,
W. Linke², J. Verderber¹, P. Steendijk³, BM. Pieske¹,
H. Post¹

- (1) Medical University Graz, Austria
- (2) Ruhr University Bochum, Germany
- (3) Leiden University Medical Center, Leiden, The Netherlands

Background & Methods

• Aim: to establish a risk-factor based animal model of heart failure with preserved ejection fraction.

bedside to bench

- arterial hypertension
- dyslipidemia
- physical inactivity

- DOCA+salt
- "western-diet"
- physical inactivity

Conclusion

• DOCA/western-diet treatment resulted in:

- concentric LV hypertrophy with
- reduced cardiac output reserve and
- decreased LV end-diastolic capacitance
- titin-isoform-shift and reduced titin-phosphorylation

• Enhancing titin-phosphorylation may improve LV dysfunction in HFpEF

Impaired insulin resistance in systolic heart failure differs from diastolic heart failure

Fasting Insulin Resistance

SB

Short Insulin Sensitivity Test

CHARITÉ

- Fasting insulin resistance occurs in HFpEF and HFrEF
- Non diabetic patients with HFrEF showed more severe insulin resistance
- Insulin resistance observed in HFpEF as well as in HFrEF non diabetic patients
- Insulin resistance within the physiologic range of insulin/glucose interaction is seen only in HFrEF but not in HFpEF

UNIVERSITÄTSMEDIZIN GÖTTINGEN

Galectin-3 Reflects Functional Capacity and Clinical Outcome in Heart Failure with Preserved Ejection Fraction (The Aldo-DHF Biomarker Sub-Study)

Edelmann F, Holzendorf V, Wachter R, Durstewitz K, Schmidt AG, Kraigher-Krainer E, Duvinage A, Unkelbach I, Düngen HD, Tschöpe C, Herrmann-Lingen C, Halle M, Hasenfuß G, Götz Gelbrich G, Stough WG, and Pieske B

For the Aldo-DHF Investigators

Galectin-3 in Aldo-DHF: Objective and Aims of the Biomarker Sub-Study

Aldosterone has been implicated in the pathogenesis of HFpEF via MR-receptor mediated myocardial fibrosis, hypertrophy, and stiffening of the left ventricle.

Borlaug BA & Paulus WJ, Eur Heart J 2011;32:670–679 Edelmann F et al., Eur Heart J 2012;33:203-212

Galectin-3 is a marker of myocardial fibrosis, and it mediates aldosterone-induced vascular inflammation and fibrosis. In acutely decompensated patients with HFpEF high levels of Galectin-3 are associated with increased mortality.

de Boer RA et al., Curr Heart Fail Rep 2010;7:1-8 de Boer RA et al., Ann Med 2011;43:60-68

Aims of the Galectin-3 Sub-Study:

 To investigate the clinical associations of galectin-3 in HFpEF.
 To investigate the effect of chronic aldosterone receptor blockade on galectin-3 levels.

- 3) To investigate whether galectin-3 levels are predictive of treatment response to aldosterone receptor blockade in HFpEF.
- 4) To investigate whether time-dependent galectin-3 levels are related clinical outcome in HFpEF.

Galectin-3 and Baseline Characteristics

Variable	Total	Galectin-3	Galectin-3	P-value
n (%), MW (±SD)		≤ 12.1ng/ml		
	n=415	n=208	n=207	
Demographics				
Age (yrs)	67 (±8)	65 (±7)	68 (±8)	<0.001
Female Gender	217 (52.3%)	100 (48.1%)	117 (56.5%)	0.085
Medical History				
Hypertension	382 (92.0%)	186 (89.4%)	196 (94.7%)	0.048
Diabetes mellitus	69 (16.6%)	28 (13.5%)	41 (19.8%)	0.083
Atrial Fibrillation	21 (5.1%)	3 (1.4%)	18 (8.7%)	0.001
Signs and Symptoms of HF				
NYHA III	58 (14.0%)	20 (9.6%)	38 (18.4%)	0.010
Edema	164 (39.5%)	68 (32.7%)	96 (46.4%)	0.004
Cardiovascular Medication				
ACE-Inhibitor or ARB	321 (77.3%)	153 (73.6%)	168 (81.2%)	0.064
Beta-Blocker	299 (72.0%)	135 (64.9%)	164 (79.2%)	0.001
Diuretic	226 (54.5%)	94 (45.2%)	132 (63.8%)	<0.001
Laboratory				
Hemoglobin (g/dL)	13.8 (±1.2)	14.0 (±1.1)	13.7 (±1.3)	0.012
eGFR (mL/min/1.73m²)	78.7 (±18.7)	84.7 (±17.2)	72.5 (±18.2)	<0.001
NT-proBNP (pg/ml)	159 (84-299)	140 (75-225)	192 (93-377)	<0.001

Galectin-3 and Baseline Characteristics

Variable	Total	Galectin-3	Galectin-3	P-value		
n (%), MW (±SD)	≤ 12.1ng/ml > 12.1ng/ml					
	n=415	n=208	n=207			
Cardiopulmonary Exercise Testing						
Peak VO ₂ (mL/kg/min)	16.3 (±3.5)	16.9 (±3.2)	15.8 (±3.6)	0.001		
AT VO ₂ (mL/kg/min)	11.6 (±3.2)	12.1 (±3.3)	11.1 (±3.1)	0.002		
VE/VCO ₂ Slope	30.3 (±5.2)	29.7 (±5.3)	31.0 (±5.1)	0.016		
6-Minute-Walk-Test						
Distance (m)	530 (±87)	546 (±83)	514 (±88)	<0.001		
Echocardiography						
LVEF (%)	67.4 (±7.8)	67.0 (±7.7)	67.8 (±7.9)	0.268		
LVMI, males (g/m²)	117.2 (±31.0)	120.4 (±33.8)	113.4 (±27.0)	0.112		
LVMI, females (g/m²)	101.1 (±22.7)	100.6 (±24.1)	101.5 (±21.5)	0.770		
LAVI (mL/m²)	28.1 (±8.5)	27.1 (±7.4)	29.1 (±9.3)	0.022		
E/e'	12.8 (±4.1)	12.3 (±3.6)	13.2 (±4.4)	0.023		

Clinical Correlates of Galectin-3

Values are B-coefficients	Model 1	P-value	Model 2	P-value	Model 3	P-value
(95%-CI) by Regression						
Peak VO ₂ - mL/kg/min	-0.164	<0.001	-0.098	0.023	-0.118	0.021
	[-0.250;-0.078]		[-0.183;-0.014]		[-0.219;-0.018]	
Six-Minute Walk Distance - m	-5.92	<0.001	-3.95	<0.001	-3.87	0.002
	[-8.05;-3.80]		[-6.05;-1.85]		[-6.31;-1.43]	
SF-36 Physical Functioning Scale	-1.40	<0.001	-1.29	<0.001	-1.17	0.001
	[-1.95;-0.838]		[-1.86;-0.719]		[-1.86;-0.482]	
NYHA Class	+0.016	<0.001	+0.012	0.009	+0.014	0.007
	[0.007;0.025]		[0.003;0.021]		[0.004;0.024]	
LV Ejection Fraction - %	+0.147	0.142	+0.079	0.445	+0.139	0.268
	[-0.049;0.343]		[-0.124;0.282]		[-0.107;0.386]	
E/e' (medial) Velocity Ratio	+0.130	0.012	+0.067	0.203	+0.027	0.653
	[0.029;0.232]		[-0.036;0.171]		[-0.091;0.145]	
LA Volume Index - mL/m ²	+0.313	0.004	+0.232	0.033	+0.148	0.199
	[0.102;0.524]		[0.019;0.444]		[-0.078;0.375]	
LV Mass Index – g/m ²	-0.465	0.198	-0.539	0.133	-0.543	0.209
	[-1.17;0.244]		[-1.24;0.164]		[-1.39;0.306]	

Model 1: Gal-3 only.

Model 2: Gal-3 adjusted for Sex, Age.

Model 3: Gal-3 adjusted for Sex, Age, Atrial Fibrillation, Blood Pressure (mean arterial pressure), eGFR [mL/min/1.73m²], Hemoglobin [g/dL].

Aldosterone-Receptor Blockade and the Course of Galectin-3 Levels

Galectin-3 at Baseline and Clinical Outcome

Course of Galectin-3 and Clinical Outcome

Summary

Galectin-3 concentrations are modestly elevated in patients with well-compensated HFpEF, and they are related to different subjective and objective measures of physical performance.

in these patients Galectin-3 levels increases over time. This increase predicts subsequent outcome independent of other factors including NT-proBNP.

There is no evidence from this study that spironolactone modulates the observed increase in galectin-3 over time, although spironolactone did improve echocardiographic measures reflective of diastolic filling and ventricular remodeling and did decrease NT-proBNP levels in Aldo-DHF.

Conclusions

These findings especially regarding the prognostic value of galectin-3 provide the foundation for future studies to further evaluate the contribution of galectin-3 to HFpEF pathophysiology and to determine if it is a viable target for therapeutic intervention.

DIAGNOSIS

Exercise test with echocardiography (diastolic stress test)

Ha et al. JASE. 2005; 18: 63-8

- Supine bike
- 25 Watts increments
- Assess systolic function
- Mitral inflow (E, A and DT)
- Mitral annulus velocity
- E/e´
- TR velocity
- Recovery

Alterations in global longitudinal strain (GLS) during the test

Medizinische Universität Graz

Alterations in early diastolic strain rate (e_DSR) during the test

Medizinische Universität Graz

CARDIAC STRUCTURE AND FUNCTION

LA deformation and volumetric function

Kraigher-Krainer E. Et al.

Left Atrial Strain

Normal Control

LA Strain: 46.2 %

www.escardio.org/HFA

LA Strain: 20.1 %

Phases of LA strain and phasic volume stratified by LA size

• P < 0.001; # $p \le 0.01$; LAE = left atrial enlargement;

Left atrial enlargement defined as LA volume index (to BSA=body surface area) ≥ 29ml/m².

www.escardio.org/HFA

Kraigher-Krainer E, Solomon SD et al. Presented at HFA 2013

HEART FAILURE

EUROPEAN

THERAPY

The Effects of Inspiratory **Muscle Training in Patients** With Heart Failure With **Preserved Ejection Fraction**

P. Palau Sampio¹, E. Dominguez Mafe², B. Mascarell Gregori¹, E. Nuñez Botero¹, JM. Ramon Ferrandis¹, P. Vergara Lozano³, J. Sanchis Fores¹, FJ. Chorro Gasco¹, J. Nuñez Villota¹

1Cardiology Departament, Hospital Clínic Universitari de Valencia, Valencia, Spain 2 Cardiology Department, Hospital General de Castellón, Castellón, Spain 3 University of Valencia, Department of Physiotherapy Clinical Trials.gov Identifier: NCT01707277

Objective

- •A simple and low intensity IMT protocol
- •12-week
- Home-based

SOCIETY OF

CARDIOLOGY

ASSOCIATION. OF THE ESC

www.escardio.org/HFA

Results at 12 weeks

Peak VO2

METs

ASSOCIATION

OF THE ESC

SOCIETY OF

CARDIOLOGY

www.escardio.org/HFA

- In patients with advanced HFpEF, IMT was associated with marked improvement in exercise capacity and QoL.
- These results provide evidence to suggest that IMT may be considered as a promising therapy in these patients

