Emerging applications of stress echocardiography:

Right heart haemodynamics

EuroEcho-Imaging 2014

Dr André La Gerche

Cardiologist, St Vincent’s Hospital Melbourne
Neil Hamilton Fairley Research Fellow, University of Melbourne
Visiting Professor, University of Leuven, Belgium

andre.lagerche@svha.org.au
DECLARATION OF INTEREST

- I have nothing to declare
Ms MF

- 27 year old mother
- Hemodynamic collapse, now recovered
- Past history
 - Addison’s disease
- Non-smoker
- Medications
 - Hydrocortisone
 - Oral contraceptive
Ms MF

- Exercise stress echocardiogram
 - 9:19 minutes to Stage 4
 - Developed severe dyspnoea, fatigue and O_2 desaturation
 - Poor blood pressure response
- Dilated right ventricle
- Normal LV
- Right ventricular systolic pressure 28 mmHg
• Right ventricular systolic pressure 72 mmHg
• ? Exercise-induced pulmonary hypertension
3 months later...
Mrs MF

• Right heart catheter
 – Mean pulmonary artery pressure = 34mmHg
 – Cardiac output = 3.3 L/min
 – Pulmonary vascular resistance = 6 WU

Mean pulmonary artery pressure ≥ 25mmHg at rest
Pulmonary capillary wedge pressure ≤15mmHg
Pulmonary vascular resistance >3
What is EIPH?
- normal pulmonary vascular response to exercise
Normal vs. abnormal pulmonary vascular function

mPAP > 3 x cardiac output is abnormal
PQ plots - echo
TR for estimation of PASP

- Trans-tricuspid pressure gradient related to the velocity of regurgitant blood
- \(P = 4 \times TRV^2 \)
- Can use agitated contrast
- \(mPAP = 0.6 \times SPAP + 2 \) (Chemla et al. *Chest* 2004)
PAP increase during ex in healthy subjects

Estimate CO with output

(a) LVOT d 26 mm

CSA = 5.31 cm²

(b) VTI 19.5 cm

SV = CSA * VTI

= 104 ml

(c) LVEDV 115 ml

(d) LVESV 44 ml

LVEF 62 %

LVSV 71 ml
PQ plots - catheter

? gold standard
but no assessment of ventricular function
Accurate exercise pressure / volumes

during intense exercise & free breathing

La Gerche et al. *Circ Imaging* 2013
Normal vs. abnormal pulmonary vascular function

G Lewis et al. *Circ Heart Fail* 2011

G Claessen *YIA AHA Chicago* 2014
Impact of pulmonary vascular disease on RV function
RV dysfunction in CTEPH
RV dysfunction in CTEPH

Claessen et al. Unpublished
RV reserve correlates with exercise capacity – resting measures DO NOT

Claessen et al. *Unpublished*
But I don’t have a bike in my CMR!

Himmelman et al. *Circulation* 1989

Claessen, La Gerche et al. *Unpublished*
But I don’t have a bike in my CMR!

Claessen, La Gerche et al. *Unpublished*
Ex-induced sPAP in mitral valve disease

- Exercise-induced sPAP associated with a 3 fold increased risk of developing symptoms at 3 years
 - More predictive than resting sPAP

- Best cutoff value of PASP during exercise for predicting events was 56 mm Hg

Relationship between PAP, RV function & vascular load

La Gerche et al. *The Right Heart* Springer Press
Failure to increase PAP with exercise is associated with a poor prognosis

Lewis, Semigran et al.
Circ Heart Failure 2011
Exercise TAPSE and sPAP

ExPHT: sPAP during ex > 54 mmHg
ExRVF: TAPSE during exercise <19 mm

Ex-induced RV dysfunction incremental prognostic value in management of asymptomatic MR

Exercise right heart haemodynamics - summary

• What is EIPH? *Excessive increase in PAP for given CO*
• Exercise estimates of PASP and CO are feasible
• Importance of exercise testing in:
 – Breathless patients (diagnosis)
 “To assess exertional breathlessness you must exert the breathless”
 – Patients with heart disease (prognosis)
 Poor RV reserve = poor exercise capacity and ↑mortality
Acknowledgements

University Hospital of Leuven
Prof. Dr. Hein Heidbuchel
Dr. Guido Claessen
Dr. Alexander Van De Bruaene
Dr. Piet Claus
Prof. Dr. Jens-Uwe Voigt
Prof. Dr. Marc Gewillig
Prof. Dr. Jan Bogaert

St Vincent’s Hospital Melbourne
Assoc Prof. David Prior
Prof. Andrew MacIsaac
Dr Andrew Burns
Dr Maria Brosnan
Dr Tim Roberts
Don Mooney