

Emerging applications of stress echocardiography:

Right heart haemodynamics

EuroEcho-Imaging 2014

Dr André La Gerche

Cardiologist, St Vincent's Hospital Melbourne Neil Hamilton Fairley Research Fellow, University of Melbourne Visiting Professor, University of Leuven, Belgium

andre.lagerche@svha.org.au

DECLARATION OF INTEREST

- I have nothing to declare

Ms MF

- 27 year old mother
- Hemodynamic collapse, now recovered
- Past history
 - Addison's disease
- Non-smoker
- Medications
 - Hydrocortisone
 - Oral contraceptive

Ms MF

- Exercise stress echocardiogram
 - 9:19 minutes to Stage 4
 - Developed severe dyspnoea, fatigue and O₂ desaturation
 - Poor blood pressure response

- Dilated right ventricle
- Normal LV
- Right ventricular systolic pressure 28 mmHg

Rest

Exercise

3 months later...

Mrs MF

- Right heart catheter
 - Mean pulmonary artery pressure = 34mmHg
 - Cardiac output = 3.3 L/min
 - Pulmonary vascular resistance = 6 WU

Mean pulmonary artery pressure ≥ 25mmHg at rest Pulmonary capillary wedge pressure ≤15mmHg Pulmonary vascular resistance >3

What is EIPH?

- normal pulmonary vascular response to exercise

Normal vs. abnormal pulmonary vascular function

Lewis et al. Circulation 2013

mPAP > 3 x cardiac output is abnormal

PQ plots - echo

TR for estimation of PASP

- Trans-tricuspid pressure gradient related to the velocity of regurgitant blood
- $P = 4 \times TRV^2$
- Can use agitated contrast
- mPAP = 0.6 x SPAP + 2 (Chemla et al. *Chest* 2004)

PAP increase during ex in healthy subjects

Estimate CO with output

PQ plots - catheter

? gold standard but no assessment of ventricular function

Accurate exercise pressure / volumes

during intense exercise & free breathing

Normal vs. abnormal pulmonary vascular function

G Lewis et al. Circ Heart Fail 2011

G Claessen YIA AHA Chicago 2014

Impact of pulmonary vascular disease on RV function

RV dysfunction in CTEPH

RV dysfunction in CTEPH

RV reserve correlates with exercise capacity – resting measures DO NOT

Claessen et al. Unpublished

But I don't have a bike in my CMR!

Himmelman et al. Circulation 1989

Claessen, La Gerche et al. Unpublished

But I don't have a bike in my CMR!

Claessen, La Gerche et al. Unpublished

Ex-induced sPAP in mitral valve disease

 Exercise-induced sPAP associated with a 3 fold increased risk of developing symptoms at 3 years

more predictive than resting sPAP

 Best cutoff value of PASP during exercise for predicting events was 56 mm Hg

Relationship between PAP, RV function & vascular load

La Gerche et al. The Right Heart Springer Press

Failure to increase PAP with exercise is associated with a poor prognosis

Lewis, Semigran et al. Circ Heart Failure 2011

Exercise TAPSE and sPAP

Ex-induced RV dysfunction incremental prognostic value in management of asymptomatic MR

ExPHT: sPAP during ex > 54 mmHg

ExRVF: TAPSE during exercise <19 mm

Exercise right heart haemodynamics - summary

- What is EIPH? Excessive increase in PAP for given CO
- Exercise estimates of PASP and CO are feasible
- Importance of exercise testing in:
 - Breathless patients (diagnosis)

"To assess exertional breathlessness you must exert the breathless"

Patients with heart disease (prognosis)

Poor RV reserve = poor exercise capacity and ↑mortality

