

Low Gradient AS: Multi-Imaging Modalities

Philippe Pibarot, DVM, PhD, FACC, FAHA, FESC, FASE Canada Research Chair in Valvular Heart Diseases

Disclosure Philippe Pibarot

Financial relationship with industry:

- **Edwards Lifesciences**
- > V-Wave

Other financial disclosure:

- **Research Grants from Canadian Institutes of Health**
- Research and Heart & Stroke Foundation of Quebec

Off label Use: None

LOW GRADIENT AS AVA<1.0 cm² MG<40 mmHg

Two Different Patterns of Low-Flow, Low-Gradient AS

NORMAL-LVEF «PARADOXICAL» **LOW-FLOW LOW-GRADIENT** 10-15% Pibarot & Dumesnil

JACC, 2012

The Role of Multi-Modality Imaging in Low Gradient AS

Corroborate measurements of stroke volume / AVA and differentiate normal-flow vs. low-flow, low-gradient AS

> Diffentiate true vs. pseudo-severe stenosis

> Optimize risk stratification and therapeutic decision making: flow reserve, myocardial fibrosis

NORMAL-LVEF «PARADOXICAL» LOW-FLOW LOW-GRADIENT

LVEF=60% SV=46 mL MG=29 mmHg

LOW-LVEF
«CLASSICAL»
LOW-FLOW
LOW-GRADIENT

LVEF=25% SV=42 mL MG=25 mmHg

"Classical" Low-Flow, Low-Gradient AS with Reduced LVEF

LVEF=25% SV=42 mL MG=25 mmHg

Low-Flow, Low-Gradient Severe(?) AS

2014 ACC/AHA Guidelines on Management of VHD: Indications for AVR in AS

Definition: AVA≤1.0 cm², Mean gradient < 40 mmHg, LVEF<50%

Stage: D2

AVR is reasonable in symptomatic patients with low LVEF, low-flow/low-gradient severe AS with a DSE that shows a mean gradient \geq 40 mm Hg with an AVA \leq 1.0 cm² at any dobutamine dose

Class Level

Ha

B

Nishimura, Otto et al. JACC 2014

2012 ESC/EACTS Guidelines on Management of VHD: Indications for AVR in AS

Severe AS on DSE: Increase in AVA <0.2 cm² with final AVA <1 cm²; mean gradient >40 mmHg)

Flow reserve: >20% increase in stroke volume

Vahanian et al. EHJ 2012

Case #1

Resting Echo

LVEF=40% SV= 53 ml AVA= 0.77 cm² ΔP = 49 / 29 mmHg

DSE

LVEF=50% SV= 73 ml AVA= 0.75 cm^2 $\Delta P= 92 / 52 \text{ mmHg}$

Case #1:

Contractile/flow reserve: Yes

Stenosis severity: True-severe

Case #2

Resting Echo

SV= 34 ml LVEF=15% Peak Δ P= 18 mmHg Mean Δ P= 12 mmHg AVA= 0.85 cm²

DSE

SV= 46 ml LVEF=25% Peak Δ P= 21 mmHg Mean Δ P= 13 mmHg AVA= 1.2 cm²

Case Study #2:

Contractile/flow reserve: Yes

Stenosis severity: Pseudo-severe

Case #2

Resting Echo

LVEF=25% SV= 51 ml $AVA = 0.8 \text{ cm}^2$ $\Delta P = 46 / 27 \text{ mmHg}$

 $\overline{\text{LVEF}=30\%}$ $\overline{\text{SV}=57}$ ml $AVA = 0.8 \text{ cm}^2$ $\Delta P = 52 / 30 \text{ mmHg}$

Case #2:

Contractile/flow reserve: No

>Stenosis severity: Indeterminate

Usefulness of AoV Ca Scoring by MDCT to Differentiate True vs. Pseudo- Severe Stenosis in Low-Flow, Low-Gradient AS

Pseudo-Severe

True-Severe

AVC: 1034 AU

AVC: 4682 AU

Clavel et al. JACC 2013: AVC Score to identify Severe AS: >1200AU in \$\frac{1}{2}\$ >2000 AU in \$\frac{1}{2}\$

Mayo-Québec-Bichat Collaboration: Accuracy of AVC to identify severe AS

Mayo-Québec-Bichat Collaboration: Impact of AVC on Survival In patients with AS

Whole Cohort

Patients treated Medically

Clavel et al. JACC 2014

"Paradoxical" Low-Flow, Low-Gradient AS with Preserved LVEF

↑Age Women Hypertension MetS – Diabetes

SV=46 mLMG=29 mmHg

Case #3

- > 75 y.o. female
- **►** Calcific AS
- >NYHA class III
- ►No CAD at angio
- **LVEF: 73%**

Courtesy of Dr G Dreyfus, Monaco Hospital

Guidelines on Management of VHD: Indications for AVR in Paradoxical Low-Flow, Low-Gradient AS

Definition: AVA≤1.0 cm², Indexed AVA≤0.6 cm²/m² **Stage:** D3

Mean gradient < 40 mmHg, LVEF≥50%, SVi<35 mL/m²

Guidelines	Recommendation for AVR	Class
ESC-EACTS 2012	AVR should be considered in symptomatic patients with low flow, low gradient (<40 mmHg) AS with normal EF only after careful confirmation of severe AS .	IIa
ACC-AHA 2014	AVR is reasonable in symptomatic patients who have low-flow, low-gradient severe AS who are normotensive and have an LVEF ≥50% if clinical, hemodynamic, and anatomic data support valve obstruction as the most likely cause of symptoms	IIa

Vahanian et al. EHJ 2012

Nishimura, Otto et al. JACC 2014

Usefulness of Stress-Echocardiography to Differentiate True vs. Pseudo-Severe Stenosis in Paradoxical, Low-Flow, Low-Gradient AS

REST

DSE 15 μg/kg/min

Peak ΔP : 51

Mean ΔP :

0.70 AVA:

LVEF:

94 mmHg

57 mmHg

 0.75 cm^2

65% **60**

51 patients with PLF-LG

Case #4

- **>** 82 y.o. woman
- >Hypertension treated with ACEI
- > No CAD
- >NYHA III, hospitalization for HF
- **LVEF:** 65%
- **►** Moderate-Severe Diastolic Dysf.
- ►AS severity on echo:
 - >AVA: 0.64 cm²; indexed AVA: 0.36 cm²/m²
 - > Peak/mean gradient: 44/26 mmHg

Usefulness of AoV Ca Scoring by MDCT to Differentiate True vs. Pseudo- Severe Stenosis in Low-Flow, Low-Gradient AS

Pseudo-Severe

True-Severe

AVC: 1034 AU

AVC: 4682 AU

Clavel et al. JACC 2013: AVC Score to identify Severe AS: >1200AU in \$\frac{1}{2}\$ >2000 AU in \$\frac{1}{2}\$

Case #4: Computed Tomography

AVC Score: 3200 AU

Patients with low-flow, low-gradient AS have more myocardial fibrosis

Paradoxical Low-Flow, Low-Gradient Preserved LVEF

Hermann et al. JACC 2011;58;402-412

Usefulness of NTP Stress-Catheterization to Differentiate True vs. Pseudo-Severe Stenosis in Paradoxical, Low-Flow, Low-Gradient AS

