

UNITE SOINS **■ CARDIOLOGIE** INTERVENTIONNELLE

CRT in Heart Failure: New Frontiers

Davos, Feb 2013

D Gras, MD, Nantes, France

CRT in Heart Failure: New Frontiers

• Background

- Dual-Site LV Pacing during CRT
- Quadripolar LV Pacing approach
- LV Endocardial Pacing: LVEP
- Vagal Nerve stimulation in HF

Source population data: OECD Units - Eucomed based on reports from major manufacturers * Europe represents total of listed countries (N/A countries excluded)

(c) 2012 Eucomed. All rights reserved.

Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT) Trial

Jagmeet P. Singh, MD, DPhil*; Helmut U. Klein, MD*; David T. Huang, MD; Sven Reek, MD; Malte Kuniss, MD; Aurelio Quesada, MD; Alon Barsheshet, MD; David Cannom, MD; Ilan Goldenberg, MD; Scott McNitt, MS; James P. Daubert, MD; Wojciech Zareba, MD; Arthur J. Moss, MD

The Target Study

All Cause Mortality following CRT in the TARGET and Control Groups

Combined Endpoint of Death and Heart Failure Related Hospitalisation between the TARGET and Control Groups

Care HF	Treatment Group	Control Group		
Implantation	(n=404 attempts)	(n=65 attempts)		
1	349 (86.3)	58 (89.2)		
2	36 (8.9)	2 (3.1)		
3	5 (1.2)	0		
Total	390 (96.4)	60 (92.3)		

CARE HF

MADIT CRT

LV Lead Events frequency as percentage of total events over 12 months (164/1647 pts)

CRT in Heart Failure: New Frontiers

- Background
- Dual-Site LV Pacing during CRT
- Quadripolar LV Pacing approach
- LV Endocardial Pacing: LVEP
- Vagal Nerve stimulation in HF

A randomized comparison of triple versus dual site ventricular stimulation in patients with congestive heart failure

Christophe Leclercq¹, MD, PhD, Fredrik Gadler², MD, PhD, Wolfgang Kranig³, MD, Sue Ellery⁴, MD, Daniel Gras⁵, MD, Arnaud Lazarus⁶, MD, Jacques Clémenty⁷, MD, Eric Boulogne⁸, MSc, Jean-Claude Daubert¹, MD, for the Triple Resynchronization In Paced Heart Failure Patients (TRIP-HF) study group

Interest of Multisite LV Pacing

Atrial based, Dual Site LV, RV Pacing

Clinical Trials

Addition of a Second LV Pacing Site in CRT Nonresponders Rationale and Design of the Multicenter Randomized V³ Trial

PIERRE BORDACHAR, MD,¹ CHRISTINE ALONSO, MD,² FREDERIC ANSELME, MD,³ SERGE BOVEDA, MD,⁴ PASCAL DEFAYE, MD,⁵ STEPHANE GARRIGUE, MD,⁶ DANIEL GRAS, MD,⁷ DIDIER KLUG, MD,⁸ OLIVIER PIOT, MD,⁹ NICOLAS SADOUL, MD,¹⁰ AND CHRISTOPHE LECLERCQ, MD¹¹

Atrial based, Dual Site LV, RV Pacing (ongoing V3 Trial)

Interest of Additional LV Lead during CRT

Non-Traditional CRT: Novel Implant Techniques Atrial based, Dual Site LV, RV P

• Goal:

To Improve Ventricular activation & CRT ImpactOngoing V3 Trial

Potential Difficulties

Subclavian Vein Occlusion
Y Adaptor & Electrical csqces
Higher Risks of PNS
CS Anatomical Limitations

CRT in Heart Failure: New Frontiers

- Background
- Dual-Site LV Pacing during CRT
- Quadripolar LV Pacing approach
- LV Endocardial Pacing: LVEP
- Vagal Nerve stimulation in HF

Single Site vs. MSLV in Healthy Heart

Subselection of Lateral Cardiac Vein during Quadripolar LV Lead Implant

Quadripolar LV Lead in case of LSVC

Non-Traditional CRT: Novel Implant Techniques Benefits of Quadri vs Bipolar LV Lead

- Management of PN Stimulation
 Pacing Vector offering

 The Best Hemodynamics
 The Best Pacing Thresholds

 Lower Need for LV Lead Revision
- Similar Lead Implant procedure
- Simultaneous 4 P Pacing for a better CRT impact to be investigated

CRT in Heart Failure: New Frontiers

- Background
- Dual-Site LV Pacing during CRT
- Quadripolar LV Pacing approach
- LV Endocardial Pacing: LVEP
- Vagal Nerve stimulation in HF

Endocardial vs. Epicardial Biventricular Pacing.

Europace 2009;11:v22-v28

AJC, 2001 88:858–862

Endocardial vs Epicardial CRT provides:

Better LV Filling and Systolic Performance

More Homogenous Resynchronization

WISE-CRT: <u>Wireless</u> <u>Stimulation</u> <u>Endocardially</u> for <u>CRT</u>

Works with any PM or ICD

Simple co-implant

- Transvenous right side system
 - Wireless left side system

Figure 2 An example of clinically determined acoustic windows in 4 body positions (in red with the patient lying supine; in green with 30° right tilt; in yellow with 30° left tilt; in purple with 30° upright tilt) superimposed on the CT-determined acoustic window (in light blue with the patient lying supine and during end inspiration) on 3D reconstruction CT of the thorax. 3D = three-dimensional; CT = computed tomography.

TEE Evaluation before Transseptal Puncture

LV Endo Pacing in Non CRT Responder

LV Lead placement under TEE guidance

LV Lead Postion post Implant, No Change in MR

LV Endo Pacing in Non CRT Responder

LV endocardial Pacing during CRT

AP View

LAO View

PNS still hapens during LV endo Pacing !!

Echo prior to Transseptal LV Lead implant

LV EF Echo Evaluation (Simson)

Permanent LV Endocardial Pacing in Clinical Practice

Avantages	Disavantages		
Easier access to LV Ventricle	Transeptal Approach		
Better Hemodynamics	Embolic risk		
Faster Depolarization	X Ray exposure		
Faster Vent activation	Anticoagulation		
Low risk of PNS	Mitral Regurgitation		
Better short & long term PT	Lead Extraction ??		

CRT in Heart Failure: New Frontiers

- Background
- Dual-Site LV Pacing during CRT
- Quadripolar LV Pacing approach
- LV Endocardial Pacing: LVEP
- Vagal Nerve stimulation in HF

Device-based Neuromodulation Therapy for HF Current Investigational Approaches SCS VNS BRS

Spinal Cord S (SCS): SCS gen abdomen or paras lead placed in dor between T1-T4

JC Lopshire and D

Vagal stimulation for the treatment of heart failure: a translational success story

Peter J Schwartz^{1,2,3,4}

inhibition of ca activity (ie, lowition the heart from sympathetic innulation home message i stimulates—as studies—the inbilateral also and sied to the cardiac-bound s synergistic effection a significant wa

Heart failure as an autonomic nervous system dysfunction

Takuya Kishi (MD, PhD)*

Vagal stimulation therapy achieved a 73% reduction in a relative risk ratio of death.

Adapted from Li M, Circulation 2004; 109: 120 -124

VNS in HF Canine High Rate Pacing Model

Adapted from Zhang Y, Circ Heart Fail 2009; 2:692-699

VNS in HF Canine High Rate Pacing Model

	Baseline		4-wk Pacing		8-wk Pacing	
	Control	VNS	Control	VNS	Control	VNS
RR, ms	510.7±77.0	514.5±61.5	394.8±36.7	428.8±55.7	407.1±47.2	451.0±76.1
SDNN, ms	84.2±21.7	86.6±21.8	23.2±5.9	36.6±5.1*	28.7±8.0	42.2±7.4*
RMSSD, ms	68.9±10.6	69.3±17.2	17.0±4.6	31.0±6.1*	22.1±5.3	37.2±7.1*
LF, norm	35.2±12.5	36.2±12.3	72.1±8.6	55.6±6.1*	65.3±10.3	53.2±9.6*
HF, norm	64.8±12.5	63.8±12.3	27.9±8.6	44.4±6.1*	34.7±10.3	46.8±9.6*
LF/HF	0.70 ± 0.33	0.63±0.34	3.03±1.79	1.29±0.33*	2.23±1.46	1.22 ± 0.75
	baroreflex sensitivity	(for the second	Iine 4-W p	Control VNS	, ing	

Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure

Gaetano M. De Ferrari^{1*}, Harry J.G.M. Crijns², Martin Borggrefe³, Goran Milasinovic⁴, Jan Smid⁵, Markus Zabel⁴, Antonello Gavazzi⁷, Antonio Sanzo¹, Robert Dennert³, Juergen Kuschyk⁴, Srdjan Raspopovic⁵, Helmut Klein^{6,8}, Karl Swedberg⁹, and Peter J. Schwartz^{1,10,11,12,13}, for the CardioFit Multicenter Trial Investigators

NECTAR-HF Study: Protocol Overview

• Study Design

- Single-blind, placebo controlled, randomized 2:1(therapy/control)
- Multicentre (European sites)
- Control patients crossed over to therapy at 6M follow-up & followed for safety through 18 months

• Sample Size

- 250 pts screened for eligibility
- 96 pts implanted with the system
- Patient Population:
 - NYHA class III HF pts
 - Ejection fraction of $\leq 35\%$
 - Not CRT candidate, $QRS \le 130 \text{ ms}$

CRT in Heart Failure: New Frontiers Summary

- Increasing Consideration for CRT
- Dual-Site LV Pacing during CRT: The V3 Trial
- Quadripolar LV Pacing approach: MPP Study
- LV Endocardial Pacing: The AlSync Study
- Vagal Nerve stimulation in HF: Nectar Trial ...