The right heart:

the Cinderella of heart failure

Piotr Ponikowski, MD, PhD, FESC Medical University, Centre for Heart Disease Clinical Military Hospital Wroclaw, Poland

Disclosure

none

Look into the Heart Failure ESC guidelines

(|L |A | |J |F European Heart Journal (2012) **33**, 1787–1847 doi:10.1093/eurheartj/ehs104 **ESC GUIDELINES**

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012

The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC

Authors/Task Force Members: John J.V. McMurray (Chairperson) (UK)*, Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Angelo Auricchio (Switzerland), Michael Böhm (Germany), Kenneth Dickstein (Norway), Volkmar Falk (Switzerland), Gerasimos Filippatos (Greece), Cândida Fonseca

> 26 authors 61 pages

weden), oni (Italy), ogdan A. Popescu erlands), pinska (Poland), is), Faiez Zannad

Committee for Practice Guidelines

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands) Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), Stephan Windecker (Switzerland).

Document Reviewers

Document Reviewers: Theresa McDonagh (CPG Co-Review Coordinator) (UK), Udo Sechtem (CPG Co-Review Coordinator) (Germany), Luis Almenar Bonet (Spain), Panayiotis Avraamides (Cyprus), Hisham A. Ben Lamin (Libya), Michele Brignole (Italy), Antonio Coca (Spain), Peter Cowburn (UK), Henry Dargie (UK), Perry Elliott (UK), Frank Arnold Flachskampf (Sweden), Guido Francesco Guida (Italy), Suzanna Hardman (UK), Bernard Iung (France), Bela Merkely (Hungary), Christian Mueller (Switzerland), John N. Nanas (Greece), Olav Wendelboe Nielsen (Denmark), Stein Ørn (Norway), John T. Parissis (Greece), Piotr Ponikowski (Poland).

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

- 1. RV & LV interaction cause of limited cardiac reserve
- 2. RVF other cause of elevated BNP / NT-proBNP (diagnosis)
- 3. Echocardiography information about RV function / RA pressure
- 4. AVRC imaging techniques
- 5. RV failure as a potential cause of renal dysfunction
- 6. RV infarction cause of acute deterioration / AHF
- 7. Adult congenital heart disease
- 8. MCS need for RV function assessment; deteriorating RV function as an indication for VAD implantation
- 9. Isolated RV failure

12.7.2 Isolated right ventricular failure

New-onset isolated right ventricular failure may occur secondarily to an acute coronary syndrome (and is managed as described above) and following massive pulmonary embolism (see pulmonary embolism guidelines²³⁹). In both situations, diuretics and vasodilators should be used cautiously or avoided so as not to reduce right ventricular filling.

Progressive isolated right ventricular failure may occur in patients with <u>pulmonary hypertension</u>. Type V phosphodiesterase inhibitors, endothelin antagonists, and prostacyclin analogues may help by decreasing pulmonary arterial resistance (see guidelines²⁴⁰).

9. Isolated RV failure

The normal right ventricle

Comparison of normal LV and RV structure and function

Haddad F et al. Circulation 2008;117:1436-48.

RV: "the take home message"

the main aim of the RV is to keep RVEDP or RAP as low as possible to optimize the venous return to provide sustained low-pressure perfusion through the lungs

Right ventricle

- generates **flow**
- pulmonary vessels:
 - low resistances, transpulmonary gradient = 5mmHg
 - great distensibility
 - no changes in compliance throughout the lungs
 - no reflection

Special Report

Right Ventricular Function and Failure Report of a National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisms of Right Heart Failure

Norbert F. Voelkel, MD; Robert A. Quaife, MD; Leslie A. Leinwand, PhD; Robyn J. Barst, MD; Michael D. McGoon, MD; Daniel R. Meldrum, MD; Jocelyn Dupuis, MD, PhD; Carlin S. Long, MD; Lewis J. Rubin, MD; Frank W. Smart, MD; Yuichiro J. Suzuki, PhD; Mark Gladwin, MD; Elizabeth M. Denholm, PhD; Dorothy B. Gail, PhD *Circulation 2006;114:1883-91*

Contemporary Reviews in Cardiovascular Medicine

Right Ventricular Function in Cardiovascular Disease, Part II

Pathophysiology, Clinical Importance, and Management of Right Ventricular Failure

François Haddad, MD; Ramona Doyle, MD; Daniel J. Murphy, MD; Sharon A. Hunt, MD Circulation 2008;117:1436-48.

Right ventricular failure

RV failure is a complex clinical syndrome that can result from any structural or functional cardiovascular disorder that impairs the ability of the RV to fill or to eject blood.

The cardinal clinical manifestations of RV failure are:
(1) fluid retention, which may lead to peripheral edema, ascites, and anasarca;
(2) decreased systolic reserve or low cardiac output, which may lead to exercise intolerance and fatigue;

(3) atrial or ventricular arrhythmias

RV and LV are interlinked:

- by a shared wall (the septum)
- by mutually encircling epicardial fibers
- by attachment of the RV free wall to the anterior and posterior septum
- by sharing the pericardial space

Voelkel NF et al. Circulation 2006;114:1883-91

Haddad F et al. Circulation 2008;117:1436-48.

Right ventricular failure

Mechanisms & Specific Causes

1. Pressure overload

left-sided HF (most common cause) other causes of pulmonary hypertension

•••

- 2. Volume overload
- 3. Ischaemia and infarction
- 4. Intrinsic myocardial process cardiomyopathy and heart failure
- 5. Inflow limitation
- 6. Complex congenital defects
- 7. Pericardial disease

STARLINGS LAW

- RV is subject to the same haemodynamic mechanisms as the left: as the right heart fails, so a higher filling pressure is required to maintain right heart output. In health, the CVP is around zero.
- RV -very sensitive to changes in afterload, more compliant than the LV.
 accomodates volume overload well, with only small increases in systemic venous pressure

tolerates pressure overload poorly (hence R heart failure in L heart failure or pulmonary vascular pathology)

Mebazaa et al. Intensive Care Med, 2004;30:185-96

Dilated Right Ventricle !

The Syndrome of "Right Heart Failure"

- Characterised by Peripheral Oedema
 - Ankle, sacral oedema
 - Ascites
- Anasarca-ανασαρα
- Genuine Fluid overload At least 5 litres for ankle oedema Often, 20 litres or more
- Gradual
 - Key stage, neurohormonal response to poor renal perfusion
 - Increase venous hydrostatic pressure
 - Starling forces
 - Fluid loss from vessels into tissues

The Syndrome of "Right Heart Failure"

Clinical signs

- Ankle oedema
 - Legs
 - Abdominal wall
- Pleural effusions
- Ascites
- Pericardial effusions
- Sinus tachycardia or AF,
- low SBP, *†JVP*,TR, cardiomegaly, S3

Clear lungs or some pulmonary oedema

Better understanding of Acute Heart Failure pathophysiology

Hemodynamically mediated damage

Venous congestion as relevant hemodynamic factor underlying WRF in acute heart failure

ROC for CVP and CI on Admission for the Development of WRF

Relative Contributions of CVP and CI to GFR at Time of PAC Removal

Mullens, W. et al. J Am Coll Cardiol 2009;53:589-596

Clinical characteristics of pts with liver dysfunction

	Alk Phosphatase		Transaminases				
	normal	abnormal	nc	ormal	abnormal		
N	944	261 (22%)		740	427 (37%)	
Clinical signs at baseline	?						
SBP (mmHg)	117	114	0.013	117	114	0.012	
DBP (mmHg)	71	69	0.073	70	71	NS	
HR (bpm)	83	83	NS	81	87	< 0.001	
Peripheral edema (%)	65.8	79.3	< 0.001	70.0	63.7	0.023	
Ascites (%)	16.9	31.0	< 0.001	22.0	17.1	0.049	
Cold extremities (%)	20.8	26.1	0.076	19.6	25.5	0.022	
Biological parameters at baseline							
BNP (pg/mL)	1465.1	2250.9	< 0.001	1464	1918	< 0.001	
Initial hospitalization characteristics (%)							
Acute MI	19.0	10.7	0.002	11.1	30.1	< 0.001	
LVEF	24.0	23.3	0.071	24.1	23.5	0.048	
Fricuspid regurgitation	45.8	52.9	0.04	51.6	40.8	< 0.001	
All-cause mortality (%)							
at 31 d	11.1	14.6	NS	8.4	17.6	< 0.001	
at 180 d	23.5	34.9	0.001	22.4	31.6	< 0.001	

Nikolaou et al, Eur Heart J (in press)

Cardio-hepatic syndromes

- Abnormal transaminases:
 - systemic and peripheral hypoperfusion
 - « Forward » HF
- Abnormal Alkaline Phosphatase:
 - clinical and biological signs of marked systemic mostly right-sided- congestion
 - Varies with BNP changes
 - « backward » HF, marker of « congested liver ».

Markers of RV Dysfunction Associated With Clinical Status and Prognosis

Right ventricular ejection fraction (echocardiography, radionuclide angiography or thermodilution) ^{28,29,31,33,35-38,77}

Right ventricular ejection fraction response to pulmonary vasodilation⁶⁵

Right ventricular dilation78

Degree of right ventricular dilation compared with left ventricular dilation³²

Tricuspid annular velocity (systolic and/or diastolic) or excursion, or echo right ventricular descent (shortening)^{30,34,79-81}

Right ventricular index of myocardial performance^{80,82,83}

Doppler-estimated dP/dt84

Tricuspid regurgitation⁸⁵⁻⁸⁷

Doppler echo-derived right ventricular tissue displacement and strain⁸⁸ Right atrial size^{85,89}

Radionuclide angiographic, invasive angiographic, or echo/catheterization pressure-volume or pressure-area loops90-92

Brain natriuretic peptide level¹⁵⁻¹⁹

Heart rate variability93

How can I detect a RVF in acute settings: *Biology*?

- Plasma lactate seems much higher than expected by systemic hemodynamic
- Elevated liver enzymes
- Decrease in PT
- Oliguria

How can I detect a RVF in acute settings: *Biology*?

- Plasma lactate seems much higher than expected by systemic hemodynamic
- Elevated liver enzymes
- Decrease in PT
- Oliguria

How to diagnose RVF in the context of advanced LVF?

- Inability to reduce congestion
- Persistent organ dysfunction
 - Renal failure
 - Liver failure

Factors Relating to Survival in Chronic Congestive Cardiomyopathy

Factors	Survivors	Non-Survivors	p-value
LVEF	18.7±6.8 %	18.1±10.3 %	NS
RVEF	41.4±23.0 %	23.9±10.2 %	< 0.01
LV dyskinesia	20.9±11.8 %	29.7±15.0 %	< 0.05
Ventricular arrhythmia	50%	44%	NS
Functional class (NYHA)	3.0 ± 0.7	3.6 ± 0.5	< 0.01
Diabetes	19 %	22 %	NS
Hypertension	19 %	33 %	NS
Previous inferior infarction	17 %	42 %	NS
COPD	6 %	33 %	NS

In-hospital mortality in EHFS II by history of HF and clinical class

Nieminen, M. S. et al. EHJ 2006 27:2725

RV Function and CV Events

Anavekar et al. for the VALIANT Investigators AJC 2007

RV dysfunction/ failure: treatment

Transplantation experimental therapies

Treatment of LVF versus RVF

LV failure

RV failure

- Often decrease BP
- NIV often needed
- Volume loading might be needed
- Often <u>increase</u> Blood Pressure (Right Coronary Artery!)
- Caution if volume loading: it might aggravate RVF

Treatment of RVF

What I should do

- Decrease RV afterload: to decrease MVO₂
- Decrease volemia: to decrease RVV and TR
- Improve contractility
- -Increase MAP: to improve RC and organ PP

What I should avoid

Mechanical ventilation as much as possible
Volume loading

Mebazaa et al. Critical Care Medicine, 2008, Suppl 36:129-139

Right Heart: Cinderella of HF

© Original Artist

www.CartoonStock.com

Reproduction rights obtainable from

RV dysfunction / failure

- Syndrome of congestion
- High Morbidity and Mortality
- Heterogenous aetiology
- Not EBM therapy
- Much less studied than the Left !

"Your left ventricle doesn't know what your right ventricle is doing."