Therapy for Acute Heart Failure: Time for Change?!

ESC Guidelines for the management of acute heart failure

Piotr Ponikowski, MD, PhD, FESC
Medical University, Centre for Heart Disease
Clinical Military Hospital
Wroclaw, Poland
Heart Failure ESC guidelines: two decades of history

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012

The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC

Authors/Task Force Members: John J.V. McMurray (Chairperson) (UK)*, Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Angelo Auricchio (Switzerland), Michael Böhm (Germany), Kenneth Dickstein (Norway), Volkmar Falk (Switzerland), Gerasimos Filippatos (Greece), Cándida Fonseca (Portugal), Miguel Angel Gomez-Sanchez (Spain), Tiny Jaarsma (Sweden), Lars Køber (Denmark), Gregory Y.H. Lip (UK), Aldo Pietro Maggioni (Italy), Alexander Parkhomenko (Ukraine), Burkert M. Pieske (Austria), Bogdan A. Popescu (Romania), Jean-Pierre Richters (Switzerland), Jerzy Robinska (Poland), Frank van den Berghe (Belgium), Faiez Zannad (France), J. F. Zannad (France), Eduardo Zannad (Brazil), David Flachskampf (Germany), Guido Franco (Italy), Mineko Fujino (Japan), Chris R. Gent (UK), Daniel C. Gheorghiade (USA), John P. Gilchrist (UK), Franco G. Giubello (Italy), Gregorio Guiraudon (Spain), Bente Harbæk (Norway), Maria A. Harjola (Finland), Graham H. Hackett (UK), Ivan Henry (USA), Shinkichi Hirata (Japan), Milton Kohoutek (USA), E. John Kottke (USA), Marc P. Keeling (Australia), Paolo Lancellotti (Italy), Charles Liem (The Netherlands), Sen-Chang Lim (Malaysia), Mark Lip (UK), Pierre Olefs (France), Boris Oparil (USA), Elke Opperhuizen (The Netherlands), William O’Neill (USA), Peter Pappone (Italy), M. S. Paul David (India), Albert Pfeffer (USA), Gunter Pfisterer (Germany), Michael Puig-Hermosilla (Spain), Paul Legrand Reuss (France), Pierre Reuter (France), Ulrich Reul (Germany), Barry Rodeheffer (USA), Hans S. Sarnoff (USA), John Sabatine (USA), Salvatore Scirica (USA), Marco Schiraldi (Italy), Janine Sideri (Greece), T. G. Smith (USA), Steven J. Sonnenblick (USA), Ian C. Starling (UK), Syed Asad Ullah (UK), Peter V. Vahanian (France), Berndt Wenzlaff (Germany), Abraham J. Zipes (USA), and Min Zong (Mainland China).

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands), Helmut Baumgartner (Germany), Claudio Cecconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands), Paulus Kirchhof (Germany/UK), Juhani Knuti (Finland), Philippe Koth (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alex Yahanian (France), Stephan Windecker (Switzerland).

Document Reviewers

Document Reviewers: Theresa McDonagh (CPG Co-Review Coordinator) (UK), Udo Sechtem (CPG Co-Review Coordinator) (Germany), Luis Almenar Bonet (Spain), Panayiotis Avraamides (Cyprus), Hisham A. Ben Lamin (Libya), Michele Brignole (Italy), Antonio Coca (Spain), Peter Couburn (UK), Henry Dargie (UK), Perry Elliott (UK), Frank Arnold Flachskompf (Sweden), Guido Francesco Guida (Italy), Suzanna Hardman (UK), Bernard Jhung (France), Bela Merkely (Hungary), Christian Mueller (Switzerland), John N. Navas (Greece), Olav Wendelboe Nielsen (Denmark), Stein Ørn (Norway), John T. Parisis (Greece), Piotr Ponikowski (Poland).

26 authors
Heart Failure ESC guidelines: two decades of history

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012

The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC)

Committee for Practice Guidelines

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands), Paulus Kirchhof (Germany/UK), Juhani Knutti (Finland), Philippe Koth (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Pопescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), K. Dickstein & P.A. Poole-Wilson, ESC HF Guidelines 2008

- Patients with acute heart failure frequently develop chronic heart failure
- Patients with chronic heart failure frequently decompensate acutely
Goals of Treatment in Acute Heart Failure

Immediate (ED/ICU/CCU)

- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Phases in the AHF management

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Need for paradigm shifting in acute heart failure: short-term intervention and long-term goals (\?)

What is needed?

- Targeted-approach
 specific types of AHF, different pathophysiologies & therapies(\?)

- End-organ protection

- Early administration of therapy
 „the earlier the better” (\?)
Need for paradigm shifting in acute heart failure: short-term intervention and long-term goals (?)

What is needed?

- prevention of tissue / organ damage caused by hypoxia, acidosis, under-perfusion;
- phase with severe symptoms (high chance to be effective);
- early clinical stabilization & chance to introduce other disease-modifying therapies;
- no confounding effects of multiple concomitant therapies;

• Early administration of therapy „the earlier the better” (?)
Goals of Treatment in Acute Heart Failure

Immediate (ED/ICU/CCU)
- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Intermediate (in-hospital)
- Stabilise patient and optimise treatment strategy
- Initiate and up-titrte disease-modifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Phases in the AHF management

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Goals of Treatment in Acute Heart Failure

Phases in the AHF management

Immediate (ED/ICU/CCU)
- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Intermediate (in-hospital)
- Stabilise patient and optimise treatment strategy
- Initiate and up-titrate disease-modifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Long-term and pre-discharge management
- Plan follow-up strategy
- Enrol in disease management programme, educate, initiate appropriate lifestyle adjustments
- Plan to up-titrate/optimize disease-modifying drugs
- Assess for appropriate device therapy
- Prevent early readmission
- Improve symptoms, quality of life and survival

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Suspected acute heart failure

History/examination
(including blood pressure and respiratory rate)
- Chest X-ray
- Echocardiogram or NP (or both)
- Blood chemistry
- ECG
- Oxygen saturation
- Full blood count

ED/ICU evaluation

Simultaneously assess for
- Ventilation/systemic oxygenation inadequate\(^2\)
- Life-threatening arrhythmia/bradycardia\(^3\)
- Blood pressure <85 mmHg or shock\(^4\)
- Acute coronary syndrome\(^d\)
- Acute mechanical cause/severe valvular disease\(^e\)

Urgent action if present
- Oxygen
- NIV
- ETT and invasive ventilation
- Electrical cardioversion
- Pacing
- Inotrope/vasopressor
- Mechanical circulatory support (e.g. IABP)
- Coronary reperfusion
- Antithrombotic therapy
- Echocardiography
- Surgical/ percutaneous intervention

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Acute Heart Failure – in hospital management

Pharmacological therapy

1. **Acute management**
 - Oxygen
 - Diuretics
 - Opiates
 - Vasodilators
 - Nesiritide
 - Inotropes
 - Vasopressors

2. **After stabilization**
 - ACE inhibitor / ARB
 - Beta-blocker
 - Mineralocorticoid receptor antagonist
 - Digoxin

Non-pharmacological therapy

1. Sodium and fluid intake restriction
2. Ventilation
 - non-invasive
 - invasive
3. **Mechanical circulatory support**
 - IABP
 - VAD
4. **Ultrafiltration**
EURObservational Research Programme
Euro Heart Surveys and Registries

AHFS: acute treatment

5118 pts enrolled by 136 centres
period: Oct 2009-May 2010

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furosemide, %</td>
<td>78.9</td>
</tr>
<tr>
<td>Furosemide median [IQR], daily dosage</td>
<td>60 [40-100]</td>
</tr>
<tr>
<td>IV diuretics, %</td>
<td>84.6</td>
</tr>
<tr>
<td>IV nitrates, %</td>
<td>18.5</td>
</tr>
<tr>
<td>Inotropes, %</td>
<td>10.5</td>
</tr>
<tr>
<td>Dobutamine, %</td>
<td>4.6</td>
</tr>
<tr>
<td>Levosimendan, %</td>
<td>2.4</td>
</tr>
<tr>
<td>Other, %</td>
<td>3.5</td>
</tr>
</tbody>
</table>

3226 (63%) outpatients with CHF
1892 (37%) in-hospital patients with AHFS

Courtesy of A. Maggioni
Initial, short-term therapies (hours-days)

<table>
<thead>
<tr>
<th>Target</th>
<th>„Traditional” therapeutic approach</th>
<th>Effects on long-term outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alleviate congestion</td>
<td>i.v. diuretics</td>
<td>? May be detrimental</td>
</tr>
<tr>
<td>Reduce ↑ LV filling pressure</td>
<td>i.v. nitrates</td>
<td>? Potentially favourable</td>
</tr>
<tr>
<td>Hypoperfusion</td>
<td>i.v. inotropes</td>
<td>Detrimental</td>
</tr>
</tbody>
</table>

Dissociation between symptomatic improvement, clinical stabilisation & favourable long-term outcome

Modified from Pang PS et al. Eur Heart J 2010;31:784-93
Interventions to Relieve Congestion

- Sodium & fluid restriction
- **Diuretics**
- Vasodilators
- Ultrafiltration / dialysis
 - BNP (nesiritide)
 - Vasopressin antagonists

Patients with pulmonary congestion/oedema without shock

An i.v. loop diuretic is recommended to improve breathlessness and relieve congestion. Symptoms, urine output, renal function, and electrolytes should be monitored regularly during use of i.v. diuretic.
Insufficient response or diuretic resistance

- Check compliance & fluid intake
- Increase dose of diuretic
- Consider switching from furosemide to bumetanide or torasemide
- Add aldosterone antagonist
- Combine loop diuretic and thiazide/metolazone
- Consider short-term i.v. infusion of loop diuretic

Renal failure (excessive rise in urea/BUN and/or creatinine)

- Check for hypovolaemia/dehydration
- Exclude use of other nephrotoxic agents, e.g. NSAIDs, trimethoprim
- Withhold aldosterone antagonist
- If using concomitant loop and thiazide diuretic stop thiazides
- Consider reducing dose of ACEi/ARB
- Consider ultrafiltration

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008
Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome – CARRESS-HF Results

Bart BA et al. NEJM 2012

Conclusion:... the use of a stepped pharmacologic-therapy algorithm was superior to a strategy of ultrafiltration for the preservation of renal function at 96 hours, with a similar amount of weight loss with the two approaches. Ultrafiltration was associated with a higher rate of adverse events.

Reconsidering Ultrafiltration in the Acute Cardiorenal Syndrome

W.H. Wilson Tang, M.D. NEJM 2012
<table>
<thead>
<tr>
<th>Fluid redistribution</th>
<th>Fluid accumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Vascular” Failure</td>
<td>“Cardiac” Failure</td>
</tr>
<tr>
<td>• High blood pressure</td>
<td>• Normal blood pressure</td>
</tr>
<tr>
<td>• Rapid worsening</td>
<td>• Gradual worsening (days)</td>
</tr>
<tr>
<td>• Pulmonary congestion</td>
<td>• Systemic rather than pulmonary congestion</td>
</tr>
<tr>
<td>• PCWP acutely increased</td>
<td>• PCWP chronically high</td>
</tr>
<tr>
<td>• Rales: present</td>
<td>• Rales: may be absent</td>
</tr>
<tr>
<td>• Severe radiographic congestion</td>
<td>• Radiographic congestion may be absent</td>
</tr>
<tr>
<td>• Weight gain minimal</td>
<td>• Weight gain significant (edema)</td>
</tr>
<tr>
<td>• LVEF relatively preserved</td>
<td>• LVEF usually low</td>
</tr>
<tr>
<td>• Response to therapy: relatively rapid</td>
<td>• Response to therapy: continue to have systemic congestion in spite of the initial symptomatic response</td>
</tr>
</tbody>
</table>

Gheorghiade M et al.; Am J Cardiol 2005;96[suppl]:11G–17G
Fluid redistribution

<table>
<thead>
<tr>
<th>“Vascular” Failure</th>
<th>“Cardiac” Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>High blood pressure</td>
<td>Normal blood pressure</td>
</tr>
<tr>
<td>Rapid worsening</td>
<td>Gradual worsening (days)</td>
</tr>
<tr>
<td>Pulmonary congestion</td>
<td>Systemic rather than pulmonary congestion</td>
</tr>
<tr>
<td>PCWP acutely increased</td>
<td>PCWP chronically high</td>
</tr>
<tr>
<td>Rales: present</td>
<td>Rales: may be absent</td>
</tr>
<tr>
<td>Severe radiographic congestion</td>
<td>Radiographic congestion may be absent</td>
</tr>
<tr>
<td>Weight gain minimal</td>
<td>Weight gain significant (edema)</td>
</tr>
<tr>
<td>LVEF relatively preserved</td>
<td>LVEF usually low</td>
</tr>
<tr>
<td>Response to therapy: relatively rapid</td>
<td>Response to therapy: continue to have systemic congestion in spite of the initial symptomatic response</td>
</tr>
</tbody>
</table>

Patients with pulmonary congestion/oedema without shock

An i.v. infusion of a nitrate should be considered in patients with pulmonary congestion/oedema and a systolic blood pressure >110 mmHg, who do not have severe mitral or aortic stenosis, to reduce pulmonary capillary wedge pressure and systemic vascular resistance. Nitrates may also relieve dyspnoea and congestion. Symptoms and blood pressure should be monitored frequently during administration of i.v. nitrates.

Gheorghiade M et al.; Am J Cardiol 2005;96[suppl]:11G–17G
Limitations of Inotropic Agents

- **Tachyarrhythmias**
 - ↑ ventricular arrhythmias
 - ↑ ventricular rate in atrial fibrillation

- **Myocardial ischemia → progression of LV dysfunction?**
 - Hypotension / coronary hypoperfusion
 - ↑ myocardial VO$_2$ (contractility & HR)

- **Mechanisms**
 - ↑ cytoplasmic Ca$^{2+}$
 - Myocardial efficiency (work/VO$_2$)?
 - Vasodilation / hypotension
Patients with hypotension, hypoperfusion or shock

An i.v. infusion of an inotrope (e.g., dobutamine) should be considered in patients with hypotension (systolic blood pressure <85 mmHg) and/or hypoperfusion to increase cardiac output, increase blood pressure, and improve peripheral perfusion. The ECG should be monitored continuously because inotropic agents can cause arrhythmias and myocardial ischaemia.

An i.v. infusion of levosimendan (or a phosphodiesterase inhibitor) may be considered to reverse the effect of beta-blockade if beta-blockade is thought to be contributing to hypoperfusion. The ECG should be monitored continuously because inotropic agents can cause arrhythmias and myocardial ischaemia, and, as these agents are also vasodilators, blood pressure should be monitored carefully.

A vasopressor (e.g., dopamine or norepinephrine) may be considered in patients who have cardiogenic shock, despite treatment with an inotrope, to increase blood pressure and vital organ perfusion. The ECG should be monitored as these agents can cause arrhythmias and/or myocardial ischaemia. Intra-arterial blood pressure measurement should be considered.

Patients with pulmonary congestion/oedema without shock

Inotropic agents are NOT recommended unless the patient is hypotensive (systolic blood pressure <85 mmHg), hypoperfused, or shocked because of safety concerns (atrial and ventricular arrhythmias, myocardial ischaemia, and death).
Assessment of hemodynamic profile: therapeutic implications

- Warm & Dry
- Warm & Wet
- Cold & Wet
- Cold & Dry

Fluid retention or redistribution?

■ „dry-out”
- diuretics
- ultrafiltration

■ „warm-up” & „dry-out”
- Vasodilators
 - nitroglycerin
 - nesiritide
 - nitroprusside

- Inotropes
 - dobutamine
 - dopamine
 - levosimendan
 - nitroprusside

Adapted from Stevenson LW, Eur J Heart Failure 2005;7:323
Invasive monitoring – for whom?

Intra-arterial line

Insertion of an intra-arterial line should only be considered in patients with persistent HF and a **low systolic blood pressure** despite treatment.

Pulmonary artery catheterization

Right heart catheterization does not have a general role in the management of AHF, but may help in the treatment of a minority of selected patients.

Pulmonary artery catheterization **should only be considered** in patients:

(i) who are refractory to pharmacological treatment
(ii) who are persistently hypotensive
(iii) in whom LV filling pressure is uncertain
(iv) who are being considered for cardiac surgery

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Primary Outcome: Mortality
Standard Oxygen Therapy versus Non-invasive Ventilation

3CPO study

Non-invasive ventilation (e.g. CPAP) should be considered in dyspnoeic patients with pulmonary oedema and a respiratory rate >20 breaths/min to improve breathlessness and reduce hypercapnia and acidosis. Non-invasive ventilation can reduce blood pressure and should not generally be used in patients with a SBP<85 mmHg (and blood pressure should be monitored regularly when this treatment is used). (Class IIa , level B)

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
Algorithm for management of acute pulmonary oedema/congestion

1. In patients’ already taking diuretic, 2.5 times existing oral dose recommended. Repeat as needed.

2. Pulse oximeter oxygen saturation <90% or PaO₂ <60 mmHg (<8.0 kPa).

3. Usually start with 40–60% oxygen, titrating to SpO₂ >90%; caution required in patients at risk of CO₂ retention.

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
AHF: management after stabilization

ACE inhibitor/angiotensin receptor blocker
In patients with reduced EF not already receiving an ACE inhibitor (or ARB), this treatment should be started as soon as possible, blood pressure and renal function permitting.*

Beta-blocker
In patients with reduced EF not already receiving a beta-blocker, this treatment should be started as soon as possible after stabilization, blood pressure and heart rate permitting*. Beta-blocker treatment may be continued in many patients during an episode of decompensation.

Mineralocorticoid receptor antagonist
In patients with reduced EF not already receiving an MRA, this treatment should be started as soon as possible, renal function and potassium permitting*. As the dose of MRA used to treat HF has a minimal effect on blood pressure, even relatively hypotensive patients may be started on this therapy during admission.

* - The dose of ACEi/ARB, beta-blockers, MRA should be up-titrated as far as possible before discharge, and a plan made to complete dose up-titration after discharge.
Acute Heart Failure Management 2012: Optimization leading to in-hospital mortality improvement

AHS – outcome data

In-hospital all-cause mortality by clinical profile at entry

- **Total**: 6.7%
- **CS (Cardiogenic shock)**: 3.8%
- **PE (Pulmonary edema)**: 9.1%
- **Hypert.**: 5.6%
- **RV failure**: 1.5%
- **Decomp. HF**: 1.2%
- **RV failure**: 8.0%
- **Decomp. HF**: 6.1%
- **Decomp. HF**: 5.0%
- **Decomp. HF**: 3.2%

Legend
- **EHFS II (2005)**
- **EURObservational Programme (2009/2010)**

CS=Cardiogenic shock; *PE*=Pulmonary edema

Nieminen M et al., Eur Heart J 2006 & Courtesy of A. Maggioni
Goals of Treatment in Acute Heart Failure

Immediate (ED/ICU/CCU)
- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Intermediate (in-hospital)
- Stabilise patient and optimise treatment strategy
- Initiate and up-titrate disease-modifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Long-term and pre-discharge management
- Plan follow-up strategy
- Enrol in disease management programme, educate, initiate appropriate lifestyle adjustments
- Plan to up-titrate/optimize disease-modifying drugs
- Assess for appropriate device therapy
- Prevent early readmission
- Improve symptoms, quality of life and survival

Phases in the AHF management

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012
HF management: principal changes from the 2008 guidelines

- an expansion of the indication for mineralocorticoid receptor antagonists;
- a new indication for the sinus node inhibitor ivabradine;
- an expanded indication for cardiac resynchronization therapy;
- new information on the role of coronary revascularization in HF;
- recognition of the growing use of ventricular assist devices;
- the emergence of transcatheter valve interventions;
Management of heart failure: summary

„The best physician for a patient with HF would be one with excellent training, extensive experience, and superb judgment with regard to all aspects of the disease. He or she would not necessarily follow guidelines slavishly.”

J.N. Cohn, Circ Heart Fail 2008;1:87-88