Therapy for Acute Heart Failure: Time for Change ?!

ESC Guidelines for the management of acute heart failure

Piotr Ponikowski, MD, PhD, FESC

Medical University, Centre for Heart Disease
Clinical Military Hospital
Wroclaw, Poland

Heart Failure ESC guidelines: two decades of history

European Heart Journal (2012) 33, 1787-1847 doi:10.1093/eurheartj/ehs104

ESC GUIDELINES

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012

The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC

Authors/Task Force Members: John J.V. McMurray (Chairperson) (UK)*, Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Angelo Auricchio (Switzerland), Michael Böhm (Germany), Kenneth Dickstein (Norway), Volkmar Falk (Switzerland), Gerasimos Filippatos (Greece), Cândida Fonseca (Portugal), Miguel Angel Gomez-Sanchez (Spain), Tiny Jaarsma (Sweden), Lars Køber (Denmark), Gregory Y.H. Lip (UK), Aldo Pietro Maggioni (Italy), Alexander Parkhomenko (Ukraine), Burkert M. Pieske (Austria), Bogdan A. Popescu erlands),

26 authors

pinska (Poland), ds), Faiez Zannad

Committee for Practice Guidelines

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands), Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK), Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK), Cyril Moulin (France), Bogdan A. Popescu (Romania), Żeljko Reiner (Croatia), Udo Sechtem (Germany), Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France), Stephan Windecker (Switzerland).

Document Reviewers

Document Reviewers: Theresa McDonagh (CPG Co-Review Coordinator) (UK), Udo Sechtem (CPG Co-Review Coordinator) (Germany), Luis Almenar Bonet (Spain), Panayiotis Avraamides (Cyprus), Hisham A. Ben Lamin (Libya), Michele Brignole (Italy), Antonio Coca (Spain), Peter Cowburn (UK), Henry Dargie (UK), Perry Elliott (UK), Frank Arnold Flachskampf (Sweden), Guido Francesco Guida (Italy), Suzanna Hardman (UK), Bernard lung (France), Bela Merkely (Hungary), Christian Mueller (Switzerland), John N. Nanas (Greece), Olav Wendelboe Nielsen (Denmark), Stein Ørn (Norway), John T. Parissis (Greece), Piotr Ponikowski (Poland).

Heart Failure ESC guidelines: two decades of history

European Heart Journal (2012) **33**, 1787–1847 doi:10.1093/eurheartj/ehs104

ESC GUIDELINES

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012

The Task Force for the Diagnosis and Treatment of Acute and

Committee for Practice Guidelines

ESC Committee for Practice Guidelines (CPG): Jeroen J. Bax (CPG Chairperson) (The Netherlands),
Helmut Baumgartner (Germany), Claudio Ceconi (Italy), Veronica Dean (France), Christi Deaton (UK),
Robert Fagard (Belgium), Christian Funck-Brentano (France), David Hasdai (Israel), Arno Hoes (The Netherlands)
Paulus Kirchhof (Germany/UK), Juhani Knuuti (Finland), Philippe Kolh (Belgium), Theresa McDonagh (UK),
Cyril Moulin (France), Bogdan A. Popescu (Romania), Željko Reiner (Croatia), Udo Sechtem (Germany),
Per Anton Sirnes (Norway), Michal Tendera (Poland), Adam Torbicki (Poland), Alec Vahanian (France),

- Patients with acute heart failure frequently develop chronic heart failure
- Patients with chronic heart failure frequently decompensate acutely

K. Dickstein & P.A. Poole-Wilson, ESC HF Guidelines 2008

Diagnostic flowchart for patients with suspected heart failure

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

Goals of Treatment in Acute Heart Failure

- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Immediate (ED/ICU/CCU)

Phases in the AHF management

Need for paradigm shifting in acute heart failure: short-term intervention and long-term goals (?)

What is needed?

- Targeted-approach specific types of AHF, different pathophysiologies & therapies(?)
- End-organ protection
- •Early administration of therapy "the earlier the better" (?)

Need for paradigm shifting in acute heart failure: short-term intervention and long-term goals (?)

What is needed?

- → prevention of tissue / organ damage caused by hypoxia, acidosis, under-perfusion;
- → phase with severe symptoms (high chance to be effective);
- → early clinical stabilization & chance to introduce other disease-modifying therapies;
- → no confounding effects of multiple concomitant therapies;
 - •Early administration of therapy ,,the earlier the better" (?)

Goals of Treatment in Acute Heart Failure

- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Immediate (ED/ICU/CCU)

- Stabilise patient and optimise treatment strategy
- Initiate and up-titrate diseasemodifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Intermediate (in-hospital)

Goals of Treatment in Acute Heart Failure

- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Immediate (ED/ICU/CCU)

- Stabilise patient and optimise treatment strategy
- Initiate and up-titrate diseasemodifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Intermediate (in-hospital)

Phases in the AHF management

- Enrol in disease
 management programme,
 educate, initiate appropriate
 lifestyle adjustments
- Plan to up-titrate/optimize disease-modifying drugs
- Assess for appropriate device therapy
- Prevent early readmission
- Improve symptoms, quality of life and survival

Long-term and predischarge management

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

Acute Heart Failure – in hospital management

Pharmacological therapy

1. Acute management

Oxygen

Diuretics

Opiates

Vasodilators

Nesiritide

Inotropes

Vasopressors

2. After stabilization

ACE inhibitor / ARB

Beta-blocker

Mineralocorticoid receptor antagonist

Digoxin

Non-pharmacological therapy

- 1. Sodium and fluid intake restriction
- 2. Ventilation

non-invasive

invasive

3. Mechanical circulatory support

IABP

VAD

4. Ultrafiltration

EURObservational Research Programme Euro Heart Surveys and Registries

5118 pts

enrolled by 136 centres period: Oct 2009-May 2010

3226 (63%)
outpatients
with CHF

1892 (37%)

in-hospital patients with AHFS

AHFS: acute treatment

	Total
Furosemide, %	78.9
Furosemide median [IQR], daily dosage	60 [40-100]
IV diuretics, %	84.6
IV nitrates, %	18.5
Inotropes, %	10.5
Dobutamine, %	4.6
Levosimendan, %	2.4
Other, %	3.5

Initial, short-term therapies (hours-days)

Target	"Traditional" therapeutic approach	Effects on long-term outcome
Alleviate congestion	i.v. diuretics	?
		May be detrimental
Reduce ↑ LV	i.v. nitrates	?
filling pressure		Potentially favourable
Hypoperfusion	i.v. inotropes	Detrimental
Poor cardiac performance		

Dissociation between symptomatic improvement, clinical stabilisation & favourable long-term outcome

Interventions to Relieve Congestion

- Sodium & fluid restriction
- Diuretics*
- Vasodilators
- Ultrafiltration / dialysis
 - BNP (nesiritide)
 - Vasopressin antagonists

Patients with pulmonary congestion/oedema without shock

An i.v. loop diuretic is recommended to improve breathlessness and relieve congestion. Symptoms, urine output, renal function, and electrolytes should be monitored regularly during use of i.v. diuretic.

1

Practical considerations in treatment of heart failure with loop diuretics

Insufficient response or diuretic resistance

- Check compliance& fluid intake
- Increase dose of diuretic
- Consider switching from furosemide to bumetanide or torasemide
- Add aldosterone antagonist
- Combine loop diuretic and thiazide/metolazone
- Consider short-term i.v. infusion of loop diuretic

Renal failure (excessive rise in urea/BUN and/or creatinine)

- check for hypovolaemia/dehydration
- Exclude use of other nephrotoxic agents, e.g. NSAIDs, trimethoprim
- Withhold aldosterone antagonist
- If using concomitant loop and thiazide diuretic stop thiazides
- Consider reducing dose of ACEI/ARB
- Consider ultrafiltration

Ultrafiltration in Decompensated Heart Failure with Cardiorenal Syndrome – CARRESS-HF Results

Conclusion:... the use of a stepped pharmacologic-therapy algorithm was superior to a strategy of ultrafiltration for the preservation of renal function at 96 hours, with a similar amount of weight loss with the two approaches. Ultrafiltration was associated with a higher rate of adverse events.

Reconsidering Ultrafiltration in the Acute Cardiorenal Syndrome

W.H. Wilson Tang, M.D.

NEJM 2012

Fluid redistribution	Fluid accumulation	
"Vascular" Failure	"Cardiac" Failure	
High blood pressure	Normal blood pressure	
 Rapid worsening 	Gradual worsening (days)	
 Pulmonary congestion 	 Systemic rather than pulmonary congestion 	
 PCWP acutely increased 	 PCWP chronically high 	
Rales: present	Rales: may be absent	
 Severe radiographic congestion 	 Radiographic congestion may be absent 	
Weight gain minimal	 Weight gain significant (edema) 	
 LVEF relatively preserved 	LVEF usually low	
 Response to therapy: relatively rapid 	 Response to therapy: continue to have systemic congestion in spite of the initial symptomatic response 	

Gheorghiade M et al.; Am J Cardiol 2005;96[suppl]:11G-13

Fluid accumulation
"Cardiac" Failure
Normal blood pressure
 Gradual worsening (days)
 Systemic rather than pulmonary congestion
 PCWP chronically high
Rales: may be absent
 Radiographic congestion may be absent
Weight gain significant (edema)
LVEF usually low
 Response to therapy: continue to have systemic congestion in spite of the initial symptomatic response

Patients with pulmonary congestion/oedema without shock

An i.v. infusion of a nitrate should be considered in patients with pulmonary congestion/oedema and a systolic blood pressure > 110 mmHg, who do not have severe mitral or aortic stenosis, to reduce pulmonary capillary wedge pressure and systemic vascular resistance. Nitrates may also relieve dyspnoea and congestion. Symptoms and blood pressure should be monitored frequently during administration of i.v. nitrates.

lla

Limitations of Inotropic Agents

- Tachyarrhythmias
 - ↑ ventricular arrhythmias
 - ↑ ventricular rate in atrial fibrillation
- Myocardial ischemia → progression of LV dysfunction?
 - Hypotension / coronary hypoperfusion
 - ↑ myocardial VO₂ (contractility & HR)
- Mechanisms
 - ↑ cytoplasmic Ca²⁺
 - Myocardial efficiency (work/VO₂)?
 - Vasodilation /hypotension

Patients with hypotension, hypoperfusion or shock		
An i.v. infusion of an inotrope (e.g. dobutamine) should be considered in patients with hypotension (systolic blood pressure <85 mmHg) and/or hypoperfusion to increase cardiac output, increase blood pressure, and improve peripheral perfusion. The ECG should be monitored continuously because inotropic agents can cause arrhythmias and myocardial ischaemia.	lla	С
An i.v. infusion of levosimendan (or a phosphodiesterase inhibitor) may be considered to reverse the effect of beta-blockade if beta-blockade is thought to be contributing to hypoperfusion. The ECG should be monitored continuously because inotropic agents can cause arrhythmias and myocardial ischaemia, and, as these agents are also vasodilators, blood pressure should be monitored carefully.	IIb	С
A vasopressor (e.g. dopamine or norepinephrine) may be considered in patients who have cardiogenic shock, despite treatment with an inotrope, to increase blood pressure and vital organ perfusion. The ECG should be monitored as these agents can cause arrhythmias and/or myocardial ischaemia. Intra-arterial blood pressure measurement should be considered.	IIb	С
Patients with pulmonary congestion/oedema without shock		

Inotropic agents are NOT recommended unless the patient is hypotensive (systolic blood pressure <85 mmHg), hypoperfused, or shocked because of safety concerns (atrial and ventricular arrhythmias, myocardial ischaemia, and death).

Ш

Assessment of hemodynamic profile: therapeutic implications

Fluid retention or redistribution?

Adapted from Stevenson LW, Eur J Heart Failure 2005;7:323

Invasive monitoring – for whom?

Intra-arterial line

Insertion of an intra-arterial line should only be considered in patients with persistent HF and a **low systolic blood pressure** despite treatment.

Pulmonary artery catheterization

Right heart catheterization does not have a general role in the management of AHF, but may help in the treatment of a minority of selected patients.

Pulmonary artery catheterization **should only be considered** in patients:

- (i) who are refractory to pharmacological treatment
- (ii) who are persistently hypotensive
- (iii) in whom LV filling pressure is uncertain
- (iv) who are being considered for cardiac surgery

3CPO study

Primary Outcome: Mortality Standard Oxygen Therapy versus Non-invasive Ventilation

Non-invasive ventilation (e.g. CPAP) should be considered in **dyspnoeic** patients with pulmonary oedema and a respiratory rate >20 breaths/min to improve breathlessness and reduce hypercapnia and acidosis. Non-invasive ventilation can reduce blood pressure and should not generally be used in patients with a SBP<85 mmHg (and blood pressure should be monitored regularly when this treatment

is used). (Class IIa , level B)

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

Algorithm for management of acute pulmonary oedema/congestion

Algorithm for management of acute pulmonary oedema/congestion

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

AHF: management after stabilization

ACE inhibitor/angiotensin receptor blocker

In patients with reduced EF not already receiving an ACE inhibitor(or ARB), this treatment should be started as soon as possible, blood pressure and renal function permitting*.

Beta-blocker

In patients with reduced EF not already receiving a beta-blocker, this treatment should be started as soon as possible after stabilization, blood pressure and heart rate permitting*. Beta-blocker treatment may be continued in many patients during an episode of decompensation

Mineralocorticoid receptor antagonist

In patients with reduced EF not already receiving an MRA, this treatment should be started as soon as possible, renal function and potassium permitting*. As the dose of MRA used to treat HF has a minimal effect on blood pressure, even relatively hypotensive patients may be started on this therapy during admission.

^{* -} The dose of ACEi/ARB, beta-blockers, MRA should be up-titrated as far as possible before discharge, and a plan made to complete dose up-titration after discharge.

Acute Heart Failure Management 2012: Optimization leading to in-hospital mortality improvement

AHS – outcome data

In-hospital all-cause mortality by clinical profile at entry

Goals of Treatment in Acute Heart Failure

- Treat symptoms
- Restore oxygenation
- Improve organ perfusion & haemodynamics
- Limit cardiac/renal damage
- Prevent thrombo-embolism
- Minimize ICU length of stay

Immediate (ED/ICU/CCU)

- Stabilise patient and optimise treatment strategy
- Initiate and up-titrate diseasemodifying pharmacological therapy
- Consider device therapy in appropriate patients
- Identify aetiology and relevant co-morbidities

Intermediate (in-hospital)

Phases in the AHF management

- Enrol in disease
 management programme,
 educate, initiate appropriate
 lifestyle adjustments
- Plan to up-titrate/optimize disease-modifying drugs
- Assess for appropriate device therapy
- Prevent early readmission
- Improve symptoms, quality of life and survival

Long-term and predischarge management

ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012

HF management: principal changes from the 2008 guidelines

- an expansion of the indication for mineralocorticoid receptor antagonists;
- a new indication for the sinus node inhibitor ivabradine;
- an expanded indication for cardiac resynchronization therapy;
- new information on the role of coronary revascularization in HF;
- recognition of the growing use of ventricular assist devices;
- the emergence of transcatheter valve interventions;

Management of heart failure: summary

"The best physician for a patient with HF would be one with excellent training, extensive experience, and superb judgment with regard to all aspects of the disease.

He or she would not necessarily follow guidelines slavishly."

J.N. Cohn, Circ Heart Fail 2008;1:87-88