Differential imaging: what for which patient? Jeroen J Bax Dept of Cardiology Leiden Univ Medical Center The Netherlands Davos, feb 2013

Research grants: Medtronic, Biotronik, Boston Scientific, St Jude, BMS imaging, GE Healthcare, Edwards Lifescience

Coronary Atherosclerosis

"Coronary Narrowing"

"Vulnerable Plaque"

Transient Ischemia Angina - Infarction

"Severity"

Myocardial Infarction Sudden Death

"Vulnerability"

Ischemia – Severity How to evaluate non-invasively?

Diagnosis of ischemia the ischemic cascade

Schinkel et al. EHJ 2003

Ischemia as an expression of a flow-limiting stenosis

Assessment of

perfusion abnormalities (stress-inducible)

Assessment of

 systolic wall motion abnormalities
 (stress-inducible)

Nuclear perfusion imaging, SPECT

POLAR MAP TO QUANTIFY EXTENT AND SEVERITY OF ISCHEMIA

Nuclear perfusion imaging with ECG gating

- Permits assessment of LVEF, LV volumes and regional function
- At rest and stress

Resolution of SPECT vs PET

SPECT

Beanlands et al. JNC 2010

Diagnostic accuracy SPECT vs PET

percentage

100

Underwood et al. EJNM 2004

Beanlands et al. JNC 2010

Stress echo to assess flow-limiting stenosis: wall motion

rest

Geleijnse et al. JACC 1997

Addition on intravenous contrast to improve border opacification

Stress MRI to assess flow-limiting stenosis: wall motion

MRI – perfusion imaging

Comparison of imaging techniques for assessment of ischemia

- all modern techniques
- can assess perfusion
- and systolic function
- perfusion may be more sensitive
- to assess ischemia
- than systolic function

Plaque – Vulnerability? How to evaluate non-invasively?

MRI – angiography (1.5T)

Leiden, NL

Aarhus, DK

Munich, GER

Boston, USA

Berlin, GER

Leeds, UK

Kurashiki, JP

St. Louis, USA

MRI to detect CAD

percentage

100

MRI - angiography

Stronger magnets: 3T coronary imaging

Yang et al. JACC 2009

CT angiography - raw data

curved MPR

Meta-analysis 64-slice CT

Patient-based detection (n=1286)

Technical developments

- Dual-source CT: higher temporal resolution
- Prospective gating: lower radiation
- 256- and 320-slice CT

Accuracy dual-source CT

24 studies, 801 pts gold standard \geq 50% stenosis on angiography

Guo et al. Int J Cardiovasc Imaging 2011

Achenbach et al. EHJ 2010

Coverage of the heart in 1 rotation

Meta-analysis 64-slice CT

Patient-based detection (n=1286)

Patient example

Man 47 years old

Outpatient clinics:

Dyspnea or atypical chest pain at exercise

Risk factors for CAD: *Dyslipidemia

Non-invasive angiography - MSCT

LAD: normal, intramural course mid

LCx: normal

320-CT – rule out CAD

57 yr old woman, 2x TIA Analysis cardiac source of embolism

320-CT – rule out CAD Smoking 39 pack years Severe dyslipidemia (chol 7.8 mmol/L) MSCT angiography to exclude (?) CAD

No significant stenosis

MSCT coronary angiography for actual rule out of CAD

N=340

Prognosis MSCT 13,966 pts, mean F-up 22.5 months

Chow et al. Circ 2011

If there is atherosclerosis, then which of these lesions is vulnerable?

- Male, 45 years, no cardiac history
- Presented at ED with acute chest pain
- **Risk factors for CAD:**
- Hypertension and positive family history

LAB and ECG:

- ECG: no ST elevation, no Q waves
- Troponin borderline elevated

MSCT calcium

CALCIUM = 0

No significant CAD?

MSCT coronary angiography

<50% stenosis LAD (non-calcified)

MSCT coronary angiography

Fusion between anatomic and functional imaging: PET/SPECT-CT

CT Angiography

PET/SPECT Using Plaque-Targeted Tracer

Fusion

Wu et al. Radiology 2007

Fusion of anatomic and functional imaging (PET-CT) - carotid arteries

Unstable (recent TIA)

Stable

Rudd et al. Circ 2002

Plaque inflammation on FDG PET - CTA

Coregistered FDG-PET and CTA images demonstrating increased FDG uptake in LAD plaques stented for ACS

Rogers et al ACC 2008

Assessing vulnerable plaque:

- What are the characteristics?
- Which imaging technology?

- When to assess?
- Do we need to assess periodically?

- Will it improve outcome?
- What are the therapeutic consequences?