Prevention of Sudden Cardiac Death

Gerhard Hindricks, MD

University Leipzig - Heart Center -Dept. of Electrophysiology Leipzig, Germany

Presenter Disclosure Information

Gerhard Hindricks has received honoraria for lectures from Biosense, St. Jude Medical, Biotronik, Medtronic, Boehringer Ingelheim

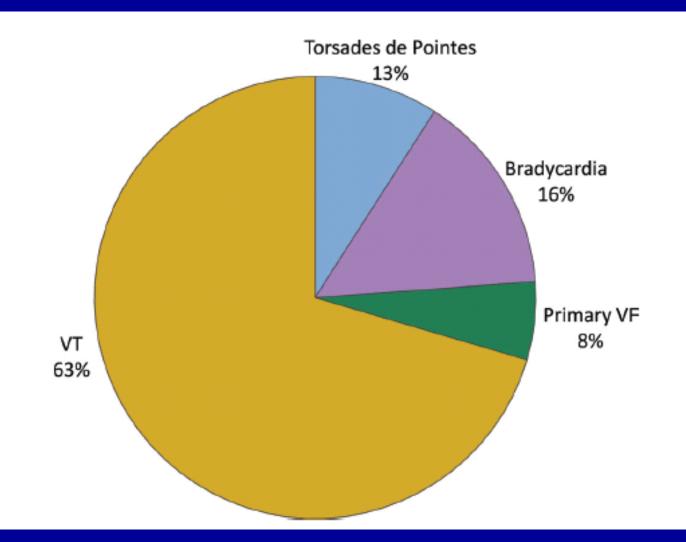
Gerhard Hindricks has received research grants from St. Jude Medical, Biotronik, Biosense

Gerhard Hindricks is a member of the Advisory Board / consultant for Biosense, St. Jude Medical, Biotronik, Stereotaxis

More people die from SCD than AIDS, breast cancer and lung cancer combined П 100 SCD AOP (300,000)mm AIDS $\mathbf{0}$ (16,000)**BREAST CANCER** (40,600)**LUNG CANCER** (157, 400)Sources: NASPE 2001, CDC 2001, American Cancer Society 2001

Prevention of SCD: Agenda

- brief overview: epidemiology of SCD
- risk stratification for SCD
 - noninvasive markers
 - invasive markers
 - genetic markers
- preventive strategies
 - role of CAD / HF prevention
 - role of the ICD
 -beyond the ICD?


Epidemiology of SCD: USA 2012

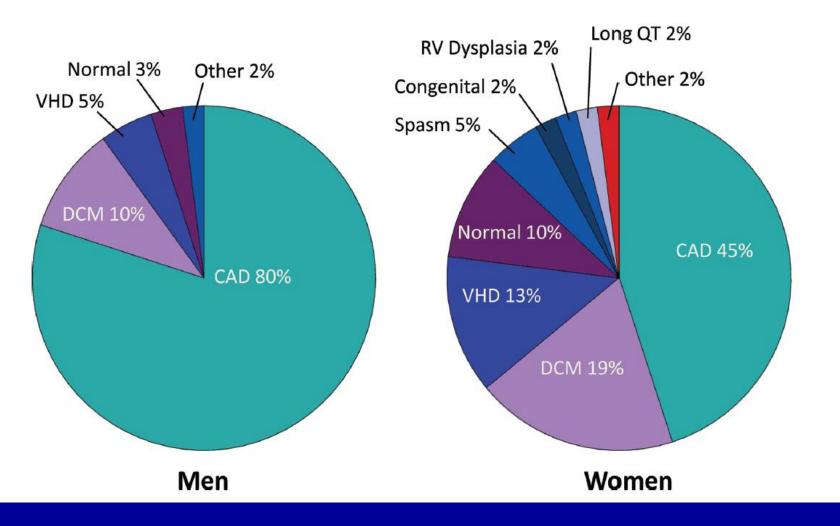
- annual rate 184.000 462.000 ⁽¹⁾
- about 50% 70% arrhythmic deaths ⁽²⁾
- vast majority of victims have organic heart disease ^(1,2)
 - clinically diagnosed
 - unknown / subclinical diseases
 [195.000 silent MI / yr in US]
- significant impact of age, race, and gender⁽¹⁾

(1) AHA Heart disease and stroke statistics - 2012 update; Circulation 2012

(2) Goldberger JJ et al.; Circulation 2011

First rhythm documented at time of arrhythmic SCD

adopted from Bayes de Luna et al; Am Heart J 1989

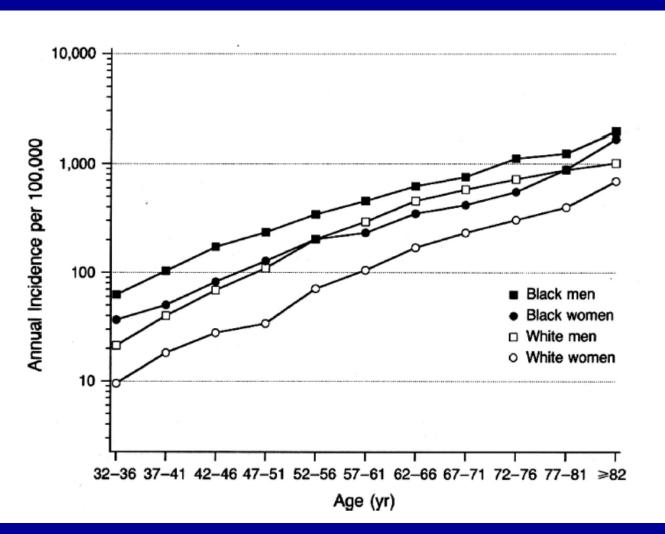

Epidemiology of SCD: USA 2012

- annual rate $184.000 462.000^{(1)}$
- about 50% 70% arrhythmic deaths ⁽²⁾
- vast majority of victims have organic heart disease (1,2)
 - clinically diagnosed
 - unknown / subclinical diseases
 [195.000 silent MI / yr in US]
- significant impact of age, race, and gender⁽¹⁾

(1) AHA Heart disease and stroke statistics - 2012 update; Circulation 2012

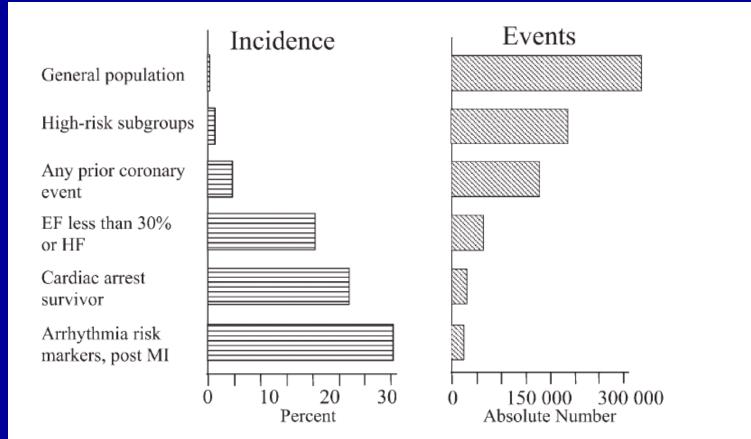
(2) Goldberger JJ et al.; Circulation 2011

Structural heart disease in SCD survivors



Deo R, Albert CM; Circulation 2012

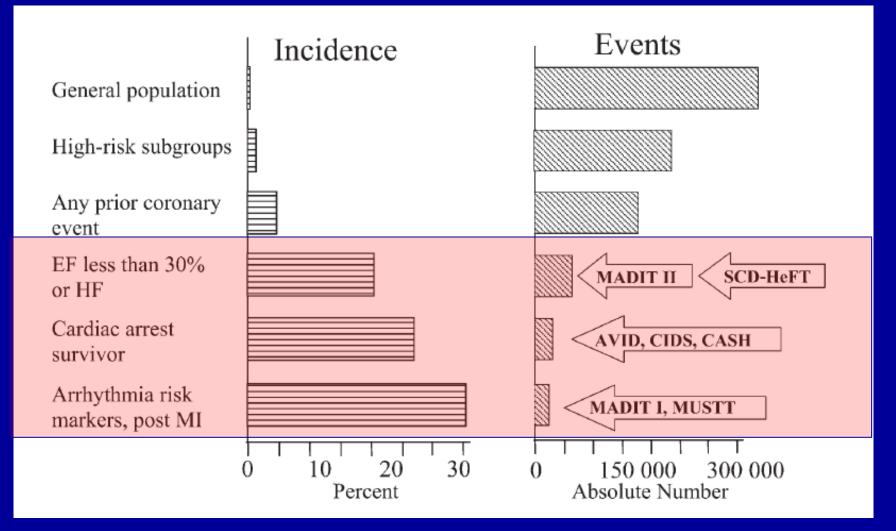
Epidemiology of SCD: USA 2012


- annual rate 184.000 462.000 ⁽¹⁾
- about 50% 70% arrhythmic deaths ⁽²⁾
- vast majority of victims have organic heart disease ^(1,2)
 - clinically diagnosed
 - unknown / subclinical diseases
 [195.000 silent MI / yr in US]
- significant impact of age, race, and gender ⁽¹⁾
 - (1) AHA Heart disease and stroke statistics 2012 update; Circulation 2012
 - (2) Goldberger JJ et al.; Circulation 2011

Incidence of SCD according to age, race, and gender

Deo R, Albert CM; Circulation 2012

Absolute number of events and event rates of SCD



adopted from: Meyerburg RJ; Circulation 1992

Prevention of SCD: Agenda

- brief overview: epidemiology of SCD
- risk stratification for SCD
 - noninvasive markers
 - invasive markers
 - genetic markers
- preventive strategies
 - role of CAD / HF prevention
 - role of the ICD
 -beyond the ICD?

Absolute number of events and event rates of SCD

adopted from: Meyerburg RJ; Circulation 1992

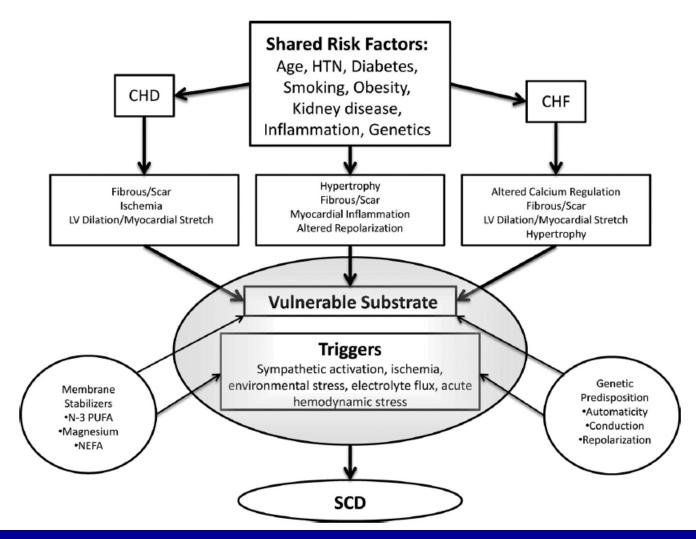
- LVEF (< 35%)
- QRS-duration
- micro T wave alternans
- venticular ectopy
- ventricular late potentials
- heart rate turbulance
- heart rate variability
- baroreflex sensitivity
- programmed ventricular stimulation

- LVEF (< 35%)
- QRS-duration
- micro T wave alternans
- venticular ectopy
- ventricular late potentials
- heart rate turbulance
- heart rate variability
- baroreflex sensitivity
- programmed ventricular stimulation

no strategy proved effective predicting SCD to achieve guideline relevance

- LVEF (< 35%)
- QRS-duration
- micro T wave alternans
- venticular ecto
- ventricular late
- heart rate turbu
- heart rate varia

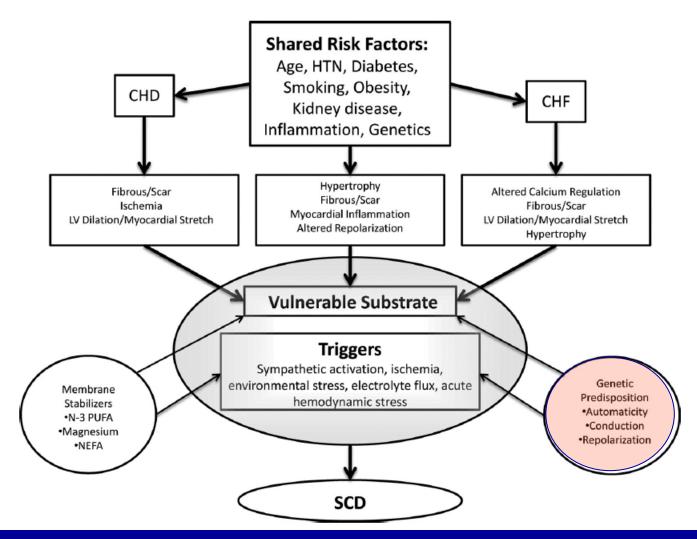
Importance of Risk Stratification


Given the relatively poor performance of current risk stratification approaches for SCD and the aforementioned various challenges and limitations, it is reasonable to query whether further efforts should be devoted to this area. From a therapeutic perspective, there is great need for risk stratification for SCD. Although lifestyle modifications and medical

- baroreflex sensitivity
- Goldberger et al.; Circulation 2011
- programmed ventricular stimulation

- risk factors are not static but dynamic
- quantitative and qualitative durability of risk markers not defined
- temporal variation of risk factors occur as a function of
 - time of the day
 - day of the week
 - season of the year
- role of rest/exertion for risk marker assessment unclear
- frequency of risk marker assessment

Sudden Cardiac Death


Critical pathways leading to electrical instability and SCD

Deo R, Albert CM; Circulation 2012

Sudden Cardiac Death

Critical pathways leading to electrical instability and SCD

Deo R, Albert CM; Circulation 2012

SCD risk stratification: role of genetic risk assessment

- Genetic testing has proved effective for risk stratification in some patients with suspected channelopathies such as LQT-syndrome, Brugada syndrome, or CPVT.
- However, these patients represent only a small minority of SCD victims.
- Identification of genes affecting cardiac electrophysiology and modulating SCD risk has raised the possibility that common genetic variants or polymorphisms in the same region may account for SCD risk in non-channelopathy patients as well.

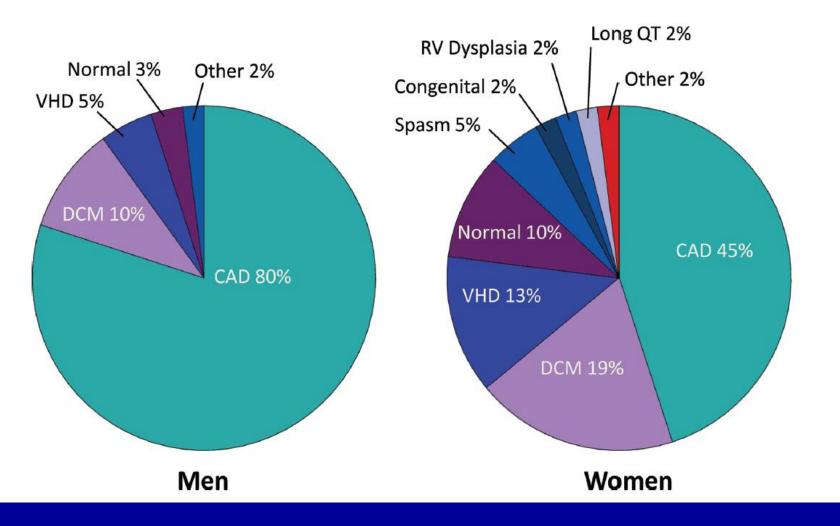
SCD risk stratification: role of genetic risk assessment

				N (SCD	
		Frequency of		Cases/	
Study	Gene	Variant Allele	Population	Controls)	Findings/Notes
Ion channels					
Westaway et al 2011 ¹⁷⁸	CASQ2 GPD1L	10-45%	Americans of European ancestry, general population	670/299	Polymorphisms in these genes are associated with SCD
Albert et al 2010 ¹⁸⁷	KCNQ1 KCNH2 SCN5A KCNE1 KCNE2	60–70%	Americans of European 516/1522 ancestry, general population		2 intronic variants (1 in <i>KCNQ1</i> and 1 in <i>SCN5A</i>) were associated with SCD
Stecker et al 2006 ¹⁸⁸	SCN5A	1—4%	Americans of European ancestry with coronary disease	67/91	No association was observed between SCN5A polymorphisms or mutations with SCD
Burke et al 2005 ¹⁸⁹	SCN5A (Y1102A)	9%	Blacks, general population	182/107	Y1102A was associated with unexplained arrhythmic death and SCA
Splawski et al 2002 ¹⁹⁰	<i>SCN5A</i> (Y1102A)	13%	Blacks, general population	23/100	Variant is associated with an increased risk of SCD or medication induced QTc prolongation
Autonomic nervous system					
Gavin et al 2011 ¹⁹¹	β2AR (Gin27Giu)	45%	Americans of European ancestry, general population	492/1388	When combined with the 2 analyses below, the β 2AR polymorphism is associated with SCD
Tseng et al 2008 ¹⁹²	β 2AR and β 1AR	 30–40% (β2AR) Aborted SCD and history of 107 0–30% (β1AR) MI/CAD, 75% Americans of European ancestry 		107/388	No association was observed between any of the βAR polymorphisms and SCD
Sotoodehnia et al 2006 ¹⁹³	β2AR (Gin27Giu)	43% whites, American cohort (4441 195/5249 The β2AR 19% blacks European ancestry, 808 Blacks)		The β 2AR variant is associated with SCD in whites but not blacks	
Snapir et al 2003 ¹⁹⁴	Alpha _{2B} -AR	48%	Finnish, population based	278/405	The deletion/deletion genotype of the $\alpha_{\rm 2B}\text{-}adrenoceptor$ gene increased the risk for

Table 3. Candidate Genes for SCD in the General Population

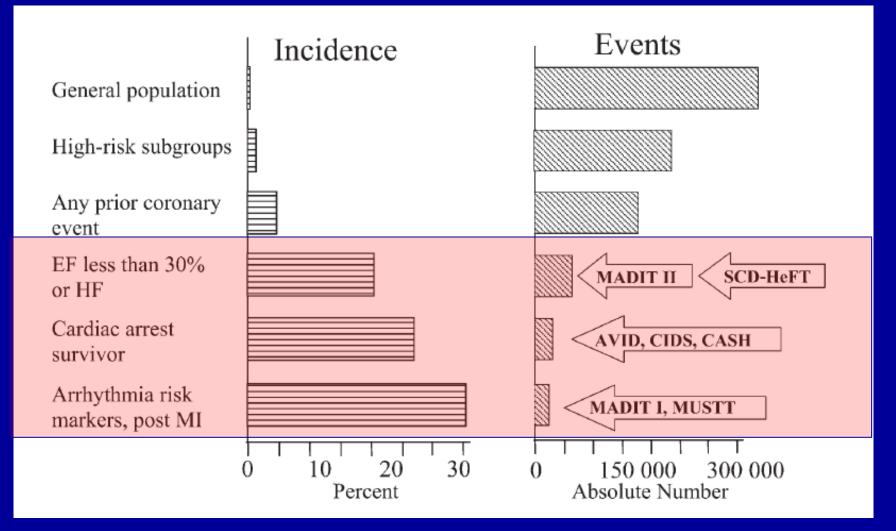
Deo R, Albert CM; Circulation 2012

SCD in middle-aged men

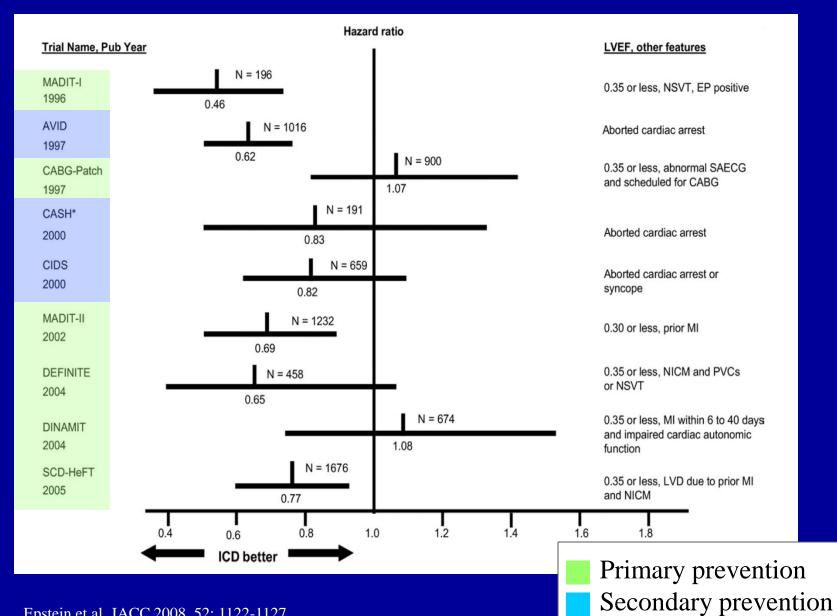

SCD risk stratification: role of genetic risk assessment

- Genetic testing has proved effective for risk stratification in patients with suspected channelopathies such as LQT-syndrome, Brugada syndrome, or CPVT.
- However, these patients represent only a small minority of SCD victims.
- Identification of genes affecting cardiac electrophysiology and modulating SCD risk has raised the possibility that common genetic variants or polymophisms in the same region may account for SCD risk in non-channelopathy patients as well.
- Although a rapidly increasing set of knowledge in this field has been reported, no genetic strategies for SCD risk assessment in non-channelopathy patients are currently available.

Prevention of SCD: Agenda


- brief overview: epidemiology of SCD
- risk stratification for SCD
 - noninvasive markers
 - invasive markers
 - genetic markers
- preventive strategies
 - role of CAD / HF prevention
 - role of the ICD
 -beyond the ICD?

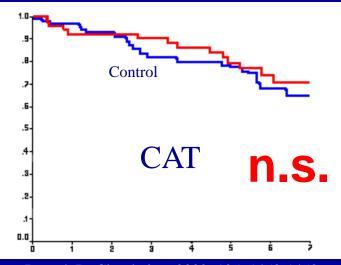
Structural heart disease in SCD survivors

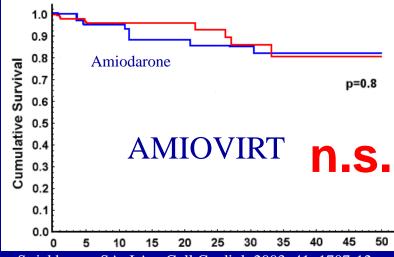

Deo R, Albert CM; Circulation 2012

Absolute number of events and event rates of SCD

adopted from: Meyerburg RJ; Circulation 1992

Sudden Cardiac Death

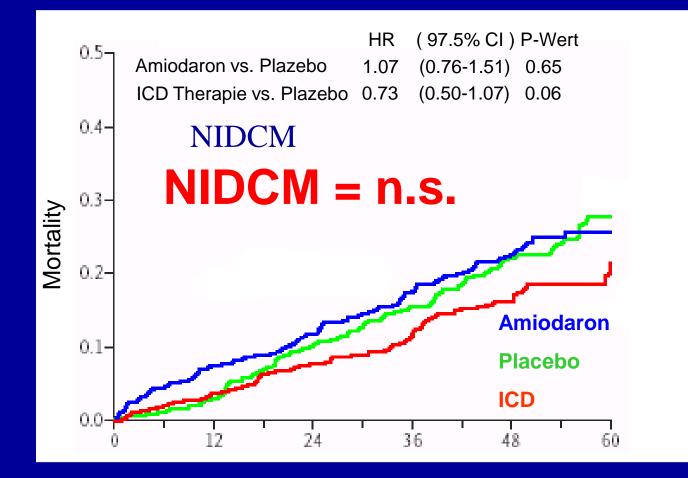

Epstein et al. JACC 2008, 52: 1122-1127


ICD therapy to prevent SCD

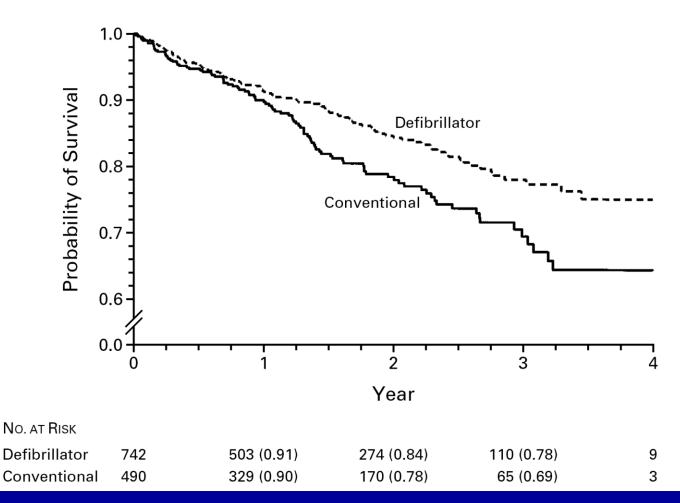
Study	Amic	odarone		BB	AC	EI/AT1	Statin		Total mortality
	ICD	Control	ICD	Control	ICD	Control	ICD	Control	(arrhythmic Death)
	%	%	%	%	%	%	%	%	р
CABG-Patch	6	3	16	10	64	68	23	23	0.64
MADIT	7	45	27	5	57	51	?	?	0.009
MUSTT	?	?	33	23	76	67	?	?	- (<0.001)
MADIT II	13	10	70	70	68	72	67	64	0.016 (<0.0001)
DINAMIT	8	14	87	87	95	94	77	80	ns
AVID	9	82	39	16	68	63	23	20	<0.02
CIDS	0	85	30	22	?	?	?	?	0.142
CASH	0	48	0	51	45	42	?	?	0.081
CAT			4	4	94	98	?	?	ns
AMIOVIRT	0	66	53	50	90	81	?	?	0.8
DEFINITE	4	7	86	84	84	87	?	?	0.08 (0.006)
SCD-HeFT	0	100/0	69	69/69	94	97/98	38	40/38	0.007

Sudden Cardiac Death

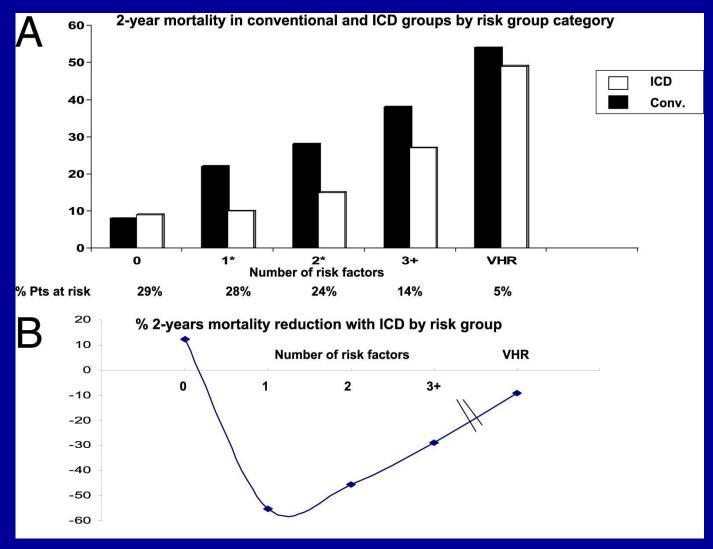
ICD therapy to prevent SCD in non-ischemic CM



Bänsch D. Circulation. 2002; 105; 1453-1458



ICD therapy to prevent SCD in non-ischemic CM



ICD therapy to prevent SCD post MI

Moss AJ, et al. N Engl J Med 2002;346:877-83

ICD therapy to prevent SCD: role of competing RF

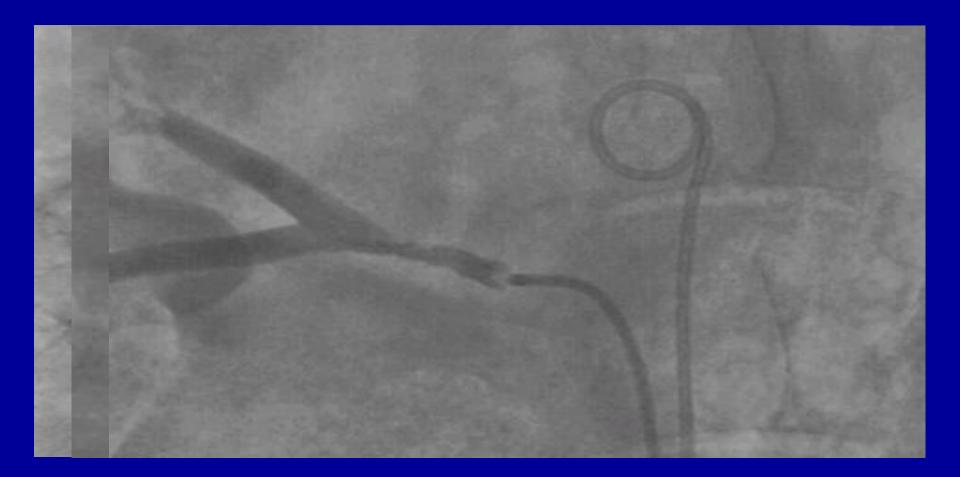
Goldenberg I, et al. J Am Coll Cardiol 2008;51:288-96

Prevention of SCD beyond the ICD: options

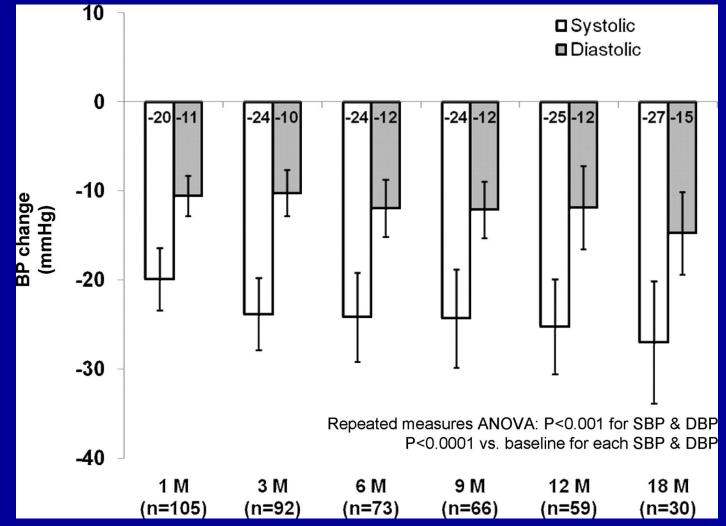
- Primary prevention of CAD / heart failure
 - life style modifications
 - prevention / treatment of metabolic syndrome
- Genetic risk stratification
- Appropriate / intense treatment of CAD / HF
- Electrical treatment of HF (CRT-P)
- EP interventions:
 - catheter ablation / substrate modification
 - modulation of autonomic tone

Absolute number of events and event rates of SCD

	Incidence	Events
General population		
High-risk subgroups		
Any prior coronary event		
EF less than 30% or HF		MADIT II SCD-HeFT
Cardiac arrest survivor		AVID, CIDS, CASH
Arrhythmia risk markers, post MI		MADIT I, MUSTT
	0 10 20 30 Percent	0 150 000 300 000 Absolute Number


adopted from: Meyerburg RJ; Circulation 1992

Prevention of SCD beyond the ICD: "green group"


- Primary prevention of CAD / heart failure
 - life style modifications
 - prevention / treatment of metabolic syndrome
- Genetic risk stratification (?)
- Appropriate treatment of CAD / HF incl. CRT-P
- EP interventions:

- modulation of autonomic tone (?)

Prevention of SCD: role of renal denervation?

Prevention of SCD: role of renal denervation?

Krum H et al. Circulation 2011;123:209-215

Prevention of SCD beyond the ICD: "red group"

- Genetic risk stratification (?)
- Appropriate treatment of CAD / HF incl. CRT-P / D
- Evidence based ICD / CRT therapy
 updated set of prospective studies
- EP interventions:
 - catheter ablation / substrate modification (?)
 - modulation of autonomic tone (?)