Cardiology Update 2013, Davos, Switzerland

February 2013

Clinical Decision Seminar Imaging

Dr. med. Robert Manka

Cardiovascular MRI and Interventional Cardiology University Hospital Zurich Institute for Biomedical Engineering University and ETH Zurich Switzerland

UniversityHospital Zurich

Case I: 42 yo male patient (emergency department)

Early in the morning at the ER, no past medical history

<u>CVRF</u>: no <u>Status</u>: BMI 23; BP 145/95 mmHg; HR 71 bpm, cardiopulmonary system unremarkable

→<u>Symptoms:</u> substernal burning chest pain radiating to the left elbow. Symptoms started two days before and subside spontaneously. No increase of pain on inspiration or on change of position. Patient suffered from a cold with sore throat and pyrexia of 39 C° a week before the chest pain had started.

Case: 42 yo male patient (SR, HF 71bpm)

ECG

Case I: 42 yo male patient

 \rightarrow <u>ECG</u>: normal

→ Blood results: CK 627 U/I, Troponin T 1.1ug/I, proBNP 772 ng/I

 \rightarrow <u>Medication</u>: no

What would you do next?

- 1. Perform emergency bypass surgery
- 2. Perform second troponin test
- 3. Perform imaging
- 4. Perform coronary angiography
- 5. Nothing

Echocardiography

EF 60%, no regional wall motion abnormality, normal valves

UniversityHospital Zurich What would you do next? (Patient still has chest pain)

- 1. Perform emergency bypass surgery
- 2. Perform second troponin test
- 3. Perform imaging
- 4. Perform coronary angiography
- 5. Nothing

Coronary angiography

LAD/RCX

RCA

Cardiovascular MRI

Cine

T2-Edema

Ľ

UniversityHospital Zurich **Delayed enhancement**

Davos Cardiology Update 2013, Page 9

What is the diagnosis?

- 1. Myocarditis
- 2. Tako Tsubo
- 3. Acute coronary syndrome (ACS)
- 4. Pneumonia
- 5. I have no clue

Causes of myocarditis

Viruses: Enteroviruses

 Influenza A and B
 Adenovirus
 Herpes
 HIV

 Bacteria: Beta-hemolytic Streptococcus

 Corynebacterium diphtheria
 Borrelia burgdorferi
 Enterococcus spp

- Chlamydia psittaci
 - Neisseria meningitidis
 - Mycoplasma pneumonia
- Staphylococcus aureus

<u>Protozoa</u> :	Trypanosoma cruzii	
	Toxoplasma gondi	
<u>Helminths</u> :	Trichinella spiralis	
	Echinococcus	
Autoimmunity:	Infection associated	
	Auto-immune disease associated	
	Primary autoimmunity	
Hypersensitivity: Penicillins		
	Methyldopa	
	Sulfamethoxazole	
<u>Toxicity:</u>	Catecholamines	
	Cocaine	
	Ethanol	

Clinical Presentation

- Asymptomatic to cardiogenic shock.
- <u>May</u> include a viral prodrome of fevers, myalgias, respiratory symptoms or gastroenteritis.
- <u>May</u> present with rapidly deteriorating LV function or arrhythmias and heart block.
- However, asymptomatic myocarditis may be a cause of unexplained deaths in 1% of cases

Management of myocarditis

- Management is dictated by clinical signs and symptoms.
- Conventional heart failure therapy is currently the only accepted therapy for myocarditis including ACE inhibitors, angiotensin receptor blocking agents, diuretics, β-blockers or amiodarone.
- Abstain from vigorous exercise for the next 2-3 months

European Heart Journal (2007) 28, 1242-1249 doi:10.1093/eurheartj/ehm113 Clinical research Imaging

The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised troponin, and unobstructed coronary arteries

Ravi G. Assomull^{1,2}, Jonathan C. Lyne¹, Niall Keenan¹, Ankur Gulati¹, Nicholas H. Bunce³, Simon W. Davies¹, Dudley J. Pennell^{1,2}, and Sanjay K. Prasad*

	Table 2 Cardiovascular magnetic resonance findings	
	CMR findings	n (%)
	Myocarditis	30 (50.0)
65%-	Non-acute Myocardial infarction	11 (18.3)
	Takotsubo cardiomyopathy	1 (1.7)
	Normal CMR findings	1 (1.7) 21 (35)
JniversityHospital	Abbreviations as in Table 1.	

Zurich

Case II: 75 yo female patient (outpatient clinic)

Known coronary artery disease, PCI/Stenting 6 months ago, unknown vessel (different hospital)

<u>CVRF</u>: Hypertension, Hyperlipidemia <u>Status</u>: BMI 21; BP 125/65 mmHg; HR 75 bpm, cardiopulmonary system unremarkable

 \rightarrow <u>Symptoms</u>: since two weeks intermittent chest pain, sometimes at rest, sometimes during effort, during the examination no symptoms

Case II: 75 yo female patient

 \rightarrow <u>ECG</u>: negative T-Waves V3-V5

 \rightarrow Blood results: normal

→<u>Medication</u>: Aspirin, Clopidogrel, Simvastatin, Metoprolol, Pantoprazol

What would you do next?

- 1. Perform emergency bypass surgery
- 2. Perform second troponin test
- 3. Perform imaging
- 4. Perform coronary angiography
- 5. Nothing

Cardiovascular MRI

Cine

Rest Perfusion

Delayed enhancement

What is the diagnosis?

- 1. Myocarditis
- 2. Tako Tsubo
- 3. Acute coronary syndrome (ACS)
- 4. Asthma bronchiale
- 5. I have no clue

ACS with acute stunning

Cine

Rest Perfusion

Delayed enhancement

Coronary angiography

LAD/RCX

In-Stent-Thrombosis

Davos Cardiology Update 2013, Page 22

Case III: 45 yo male patient (emergency department)

First time in hospital, no medical history

<u>CVRF</u>: no

<u>Status</u>: BMI 24; BP 135/75 mmHg; HR 85 bpm, cardiopulmonary system unremarkable

\rightarrow <u>Symptoms</u>: since 4 hours chest pain

Case III: 45 yo male patient

 \rightarrow <u>ECG</u>: negative T-Waves V3-V5

→ <u>Blood results:</u> Troponin I 1.3ng/I

 \rightarrow <u>Medication</u>: no

What would you do next?

- 1. Perform emergency bypass surgery
- 2. Perform second troponin test
- 3. Perform imaging
- 4. Perform coronary angiography
- 5. Nothing

Cardiovascular MRI

Cine

Rest Perfusion

Delayed Enhancement

Detecting Acute Coronary Syndrome in the Emergency Department With Cardiac Magnetic Resonance Imaging

Raymond Y. Kwong, MD; Adam E. Schussheim, MD; Suresh Rekhraj, MD; Anthony H. Aletras, PhD; Nancy Geller, PhD; Janice Davis, RN; Timothy F. Christian, MD; Robert S. Balaban, PhD; Andrew E. Arai, MD

AbMRI

ACS. Probability values summarize the z-test, which was 2-tailed and adjusted for tests performed on same subjects. Sensitivity is shown by dark bars and specificity by white bars. ECG indicates abnormal ECG; ECG strict, strict electrocardiographic evidence of ischemia defined as ST depression >1 mm or T-wave inversion >3 mm; Trop, initial troponin-I; Trop peak, peak troponin-I; TIMI, TIMI risk score; and NS, not significant.

TICRF indicates total cardiac risk factors; AbECG, abnormal ECG; AbTn, abnormal initial troponin; AbMRI, abnormal MRI (see Methods for defining criteria for each variable); and DF, degrees of freedom.

1

3.0754

19.12

*-2 Log Likelihood=28.00 with 3 DF (P=0.0001).

 $\pm -2 \text{ Log Likelihood} = 53.36 \text{ with 4 DF } (p=0.0001).$

0.0001

21.7

Cardiovascular MRI

- is a useful tool to determine the underlying aetiology of ACS in Patients with unobstructed coronaries
- is suitable for triage of patients with chest pain in the emergency department. MRI accurately detects a high fraction of patients with acute coronary syndrome, including patients with enzyme-negative unstable angina

Thank You

Dr. med. Robert Manka

Cardiovascular MRI and Interventional Cardiology University Hospital Zurich Institute for Biomedical Engineering University and ETH Zurich Switzerland *robert.manka@usz.ch*

UniversityHospital Zurich