Protective Effect of the Human Coronary Collateral Circulation

Christian Seiler, Bern, Switzerland No conflicts of interest to disclose Normal heart

Occlusive CAD

Fulton. Brit Heart J 1964; 26: 1-

Patient A

Patient B

Collateral flow index, CFI=(P_{occl}-CVP)/(P_{ao}-CVP)

Traupe et al. Circulation 2010; 122: 1210-

Distribution of Human Coronary Collateral Function (n=1'740)

Coronary vs Peripheral (A. fem. s.) Circulation: Collateral Function

Collateral Flow Index (CFI) and All-Cause Mortality (n=234)

Impact of Coronary Collateral Circulation (CCC) on Survival

Meier P et al. Eur Heart J 2012; 33: 614-

Physical Arteriogenesis

Vogel et al. Trends Cardiovasc Med 2010; 20: 129-

Molecular Pathways in Arteriogenesis

Seiler. Collateral Circulation of the Heart 2009; Springer

Increased Diastolic Coronary Shear Stress: External Counterpulsation (ECP)

ECP

Glökler et al. Heart 2010; 96:202-

Sham ECP

Stenotic vessels

Meier P et al. Circulation 2009; 120: 1355-

Protective Effect of Coronary Collaterals-Sufficient CFI $\rightarrow \downarrow$ infarct size-Sufficient CFI $\rightarrow \downarrow$ mortality-Arteriogenic Tx \rightarrow likely \downarrow mortality

Physical arteriogenesis:

 1 diastolic flow velocity / duration
 ECP, exercise, ivabradine
 ECP: most significant 1 collateral function

-Chemical arteriogenesis:

Monocyte activation by growth factors Granulocyte colony stimulating factors MCP-1 (cave: atherogenesis)

Arteriogenic Therapy and All-Cause Mortality (n=234)

Arteriogenesis by Granulocyte-Colony Stimulating Factor (G-CSF)

G-CSF (n=26)

Placebo (n=26)

ECG ST-segment elevation (ste) during coronary occlusion

Meier P et al. Circulation 2009; 120: 1355-

1-min Coronary Occlusion: Signs of Ischemia and CFI (n=1'740)

1-Minute coronary balloon occlusion

Ischemia During Coronary Occlusion and All-Cause Mortality (n=234)

Intracoronary ECG During Coronary Occlusion

Figure 4

Coronary Pressure-Derived Collateral Flow Index (CFI)

Coronary Pressure-Derived Collateral Flow Index (CFI)

Traupe et al. Circulation 2010; 122: 1210-

Extracardiac Coronary Collateral Supply by the IMA(s)?

CFI without LIMA-Occlusion

CFI with LIMA-Occlusion

CFI =0.138

CFI =0.195

#11 / 12.03.12

"Wer seine Kollateralen trainiert, lebt länger. Eindrucksvoll haben das der Arzt ..., von der Universitätsklinik für Kardiologie und Kollegen in Bern nachgewiesen, als sie die Daten von 6'529 Patienten auswerteten: .."

von Jörg Blech

Zbinden et al. Eur J CV Prev Rehabil 2007; 250-
Hindlimb Arteriogenesis in Apo-E^{-/-} Mice by Ivabradine

Schirmer et al. Eur Heart J 2011; epub ahead of print

Hindlimb Arteriogenesis in Rabbits by Monocyte Chemotactic Protein-1

Arteriogenesis by Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF)

GM-CSF

Placebo

Seiler et al. Circulation 2001; 104: 2012-

Effects of Coronary Sinus Occlusion on Intracoronary ECG ST Shift

Effects of Coronary Sinus Occlusion on Intracoronary ECG ST Shift

1896 Olympic Marathon

Spyridon Louis (GR): 2:58:50

I.c. ECG ST-Shift for the Detection of CFI > 0.200 (>0.250)

1-min Coronary Occlusion: ECG Signs of Ischemia and Myocardial Blood Flow

Seiler iv/12

Vogel et al. Heart 2007; 93: 115-

Hindlimb (Arterio-) and Atherogenesis in Apo-E^{-/-} Mice by MCP-1

Van Royen et al. Circ Res 2003; 92: 218-

Femoral artery ligature

Ligature plus A-V shunt

Seiler. Collateral circulation of the heart. Springer 2009

Hindlimb Arteriogenesis in Rabbits by Monocyte Chemotactic Protein-1

Diastolic augmentation of radial artery flow velocity

Increased Diastolic Coronary Shear Stress: External Counterpulsation

Before placebo treatment

After placebo treatment

Vogel et al. Trends Cardiovasc Med 2010; 20: 129-

November 2009

November 2009

Collateral Conductance After Femoral Artery Ligature + A-V Shunt

Eitenmüller et al. Circ Res 2006; 99: 656-

Seiler i/12

Physical Coronary Arteriogenesis

-Arteriogenesis = structural artery growth
-↑ Flow velocity: trigger for arteriogenesis
-↑ Flow velocity due to ↑ pressure gradient
-Process in native and collateral arteries
-Arterio-venous shunt: model for arteriogenesis
-A-V shunt creation: arteriogenesis progression
-A-V shunt closure: arteriogenesis regression

-Implication: 1 diastolic flow velocity / duration

Hindlimb Arteriogenesis in Rabbits by Transforming Growth Factor-^{β1}

Grundmann et al. J Am Coll Cardiol 2007; 50: 351-

Baseline Myocardial Perfusion by PET

Chareonthaitawee et al. Cardiovasc Res 2001; 50: 151-

Myocardial Perfusion by Contrast Echo

Vogel et al. J Am Coll Cardiol 2005; 45: 754-

Baseline and Hyperemic Myocardial Perfusion by Contrast Echo

- hcm hypertrophic cardiomyopathy
- athl athlete's heart
- hhd hypertensive heart disease
- sed sedentary; normal heart

Indermühle et al. Eur Heart J 2006; 27: 1571-Indermühle et al. SMW 2009; 139: 691-

Lower Limit of Myocardial Perfusion

1-min Coronary Occlusion: ECG Signs of Ischemia and Myocardial Blood Flow

Vogel et al. Heart 2007; 93: 115-
Hindlimb Arteriogenesis in Rabbits by Monocyte Chemotactic Protein-1

