Impact of target damage in the management of hypertension: endothelium, the heart and the kidney

Stefano Taddei
Department of Clinical and Experimental Medicine
University of Pisa, Italy
2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:

ESH-ESC Task Force on the Management of Arterial Hypertension
Established Subclinical Organ Damage

- Electrocardiographic LVH (Sokolow-Lyon > 38 mm; Cornell > 2440 mm*ms) or:
- Echocardiographic LVH° (LVMI M ≥ 125 g/m², W ≥ 110 g/m²)
- Carotid wall thickening (IMT > 0.9 mm) or plaque
- Carotid-femoral pulse wave velocity >12 m/s
- Ankle/brachial BP index < 0.9
- Slight increase in plasma creatinine:
  M: 115–133 μmol/l (1.3–1.5 mg/dl);
  W: 107–124 μmol/l (1.2–1.4 mg/dl)
- Low estimated glomerular filtration rate† (< 60 ml/min/1.73 m²) or creatinine clearance◊ (< 60 ml/min)
- Microalbuminuria 30–300 mg/24 h or albumin-creatinine ratio:
  ≥ 22 (M); or ≥ 31 (W) mg/g creatinine

2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:
ESH-ESC Task Force on the Management of Arterial Hypertension
Established Subclinical Organ Damage

- Electrocardiographic LVH (Sokolow-Lyon > 38 mm; Cornell > 2440 mm*ms) or:
- Echocardiographic LVH° (LVMI M ≥ 125 g/m², W ≥ 110 g/m²)
- Carotid wall thickening (IMT > 0.9 mm) or plaque
- Carotid-femoral pulse wave velocity >12 m/s
- Ankle/brachial BP index < 0.9
- Slight increase in plasma creatinine:
  - M: 115–133 μmol/l (1.3–1.5 mg/dl);
  - W: 107–124 μmol/l (1.2–1.4 mg/dl)
- Low estimated glomerular filtration rate† (< 60 ml/min/1.73 m²)
  or creatinine clearance○ (< 60 ml/min)
- Microalbuminuria 30–300 mg/24 h or albumin-creatinine ratio:
  ≥ 22 (M); or ≥ 31 (W) mg/g creatinine

2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:
ESH-ESC Task Force on the Management of Arterial Hypertension
LVH diagnosis: sensitivity and specificity of ECG and Echo
(autoptic LV mass as reference)

Woythaler JN et al. JACC 1983; 2: 305
Prognostic significance of LVH
Prognostic Value of Baseline LV Hypertrophy at ECG in the Framingham Heart Study

Definition of LVH: Framingham voltage + ST-T changes; Prevalence: 2.9% in men, 1.5% in women

LV mass by Echo predicts CV events

Levy D et al., NEJM 1990; 322: 1561-66
Schillaci G et al., Hypertension 2000; 35: 580-86
LVH at ECG or echo predicts stroke in essential hypertensive patients

The PIUMA Study

Prognostic significance of LVH regression
LVH regression by ECG predicts CV mortality

The Framingham study

Levy D et al., Circulation 1994; 90:1786-93
Prognostic Significance of Left Ventricular Mass Change During Treatment of Hypertension

**Conclusion** In patients with essential hypertension and baseline electrocardiographic LV hypertrophy, lower LV mass during antihypertensive treatment is associated with lower rates of clinical end points, additional to effects of blood pressure lowering and treatment modality.

*JAMA. 2004;292:2350-2356*
LVH regression is related to antihypertensive drug class used

Meta-analysis of 80 RCTs, 4113 hypertensive patients

Klingbeil AU et al., Am J Med 2003; 115: 41-46
Established Subclinical Organ Damage

- Electrocardiographic LVH (Sokolow-Lyon > 38 mm; Cornell > 2440 mm\(^*\)ms) or:
- Echocardiographic LVH\(^\circ\) (LVMI M \(\geq\) 125 g/m\(^2\), W \(\geq\) 110 g/m\(^2\))
- Carotid wall thickening (IMT > 0.9 mm) or plaque
- Carotid-femoral pulse wave velocity > 12 m/s
- Ankle/brachial BP index < 0.9

- Slight increase in plasma creatinine:
  M: 115–133 \(\mu\)mol/l (1.3–1.5 mg/dl);
  W: 107–124 \(\mu\)mol/l (1.2–1.4 mg/dl)
- Low estimated glomerular filtration rate\(^\dagger\) (< 60 ml/min/1.73 m\(^2\))
  or creatinine clearance\(^\Diamond\) (< 60 ml/min)
- Microalbuminuria 30–300 mg/24 h or albumin-creatinine ratio:
  \(\geq\) 22 (M); or \(\geq\) 31 (W) mg/g creatinine

---

2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:
ESH-ESC Task Force on the Management of Arterial Hypertension
No need of 24hr urine collection for albuminuria evaluation!

AER (Albumin excretion rate) overnight o 24 ore

ACR (Albumin/creatinine ratio)

Albuminuria spot

20-200 ug/min
cioè
30-300 mg/24 ore

2.5-25 mg/mmol

20-150 mg/L
Prognostic significance of renal damage
Currently, only kidney damage is perceived by physicians to be associated with microalbuminuria – excluding damage to other important organs.

If an hypertensive patients has a slight increase in serum creatinine (or a decrease in estimated GFR) or microalbuminuria, does it mean that the patient has an increased risk to develop renal disease?

**NO**

It means that the patient has an increased risk of cardiovascular events.

In hypertensive patients, the kidney is a “sensitive” and “affordable” marker of cardiovascular risk!
Incidence of *cardiovascular mortality* in patients with or without additional risk factors in the HOT study

RR, relative risk; CI, 95% confidence interval, adjusted for all other risk factors except the one compared.

Zanchetti A et al. *J Hypertens* 2001
Urinary albumin-to-creatinine ratio

Deciles of UACR

Quintiles of UA/CR

Non diabetics (n = 7143)
Diabetics (n = 1063)

Events (%)

LIFE study; Watchell K, Arch Int Med 2003
Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis

Chronic Kidney Disease Prognosis Consortium*

Lancet 2010; 375:2073-81
Risk of cardiovascular events according to renal or coronary artery disease

- Renal insufficiency
- Microalbuminuria
- Renal insufficiency and microalbuminuria
- Coronary artery disease

The predictive value of renal insufficiency and microalbuminuria is comparable to that of pre-existing coronary artery disease and is even superior when they are present together.

Mann JF, Yusuf S et al., Ann Int Med, 2001
Prognostic significance of renal damage regression
Reduced albuminuria is associated with reduced CV events in patients with HTN

n=8206 pts

“ [...] changes in albuminuria translate to changes in risk.”

Modified from Ibsen H et al., Hypertension 2005
Change in microalbuminuria as a predictor of CV and renal outcomes in patients with vascular disease
The ONTARGET/TRANSCEND study programme

The risk of CV and renal outcomes is increased significantly if albuminuria is increased and is decreased if albuminuria is reduced

Schmieder RE, et al. JASN 2011
Target BP for nephroprotection in patients with renal dysfunction: < 130/80 mmHg

1. The JNC 7 2003
2. The 2007 ESH/ESC Guidelines and REAPPRAISAL of ESH Task Force 2009

◆ **Diabetic nephropathy**: no randomised controlled study for BP reduction, but only retrospective and subgroup analyses

◆ **Non diabetic nephropathy**: 3 randomised controlled studies with contrasting results
Does the J-curve exists? Relative risk for renal and CV outcomes based on current level of systolic blood pressure in the IDNT study

Pohl MA et al JASN 2005

Berl T et al JASN 2005
Table 2. Secondary Efficacy End Points during the Double-Blind Treatment Period.*

<table>
<thead>
<tr>
<th>End Point</th>
<th>Olmesartan (N = 2232)</th>
<th>Placebo (N = 2215)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite of cardiovascular complications or death from cardiovascular</td>
<td>96 (4.3)</td>
<td>94 (4.2)</td>
<td>1.00 (0.75–1.33)</td>
<td>0.99</td>
</tr>
<tr>
<td>Composite of death from any cause</td>
<td>26 (1.2)</td>
<td>15 (0.7)</td>
<td>1.70 (0.90–3.22)</td>
<td>0.10</td>
</tr>
<tr>
<td>Death from cardiovascular causes</td>
<td>15 (0.7)</td>
<td>3 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death not related to Cardiovascular Causes</td>
<td>8 (0.4)</td>
<td>10 (0.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death from unknown cause</td>
<td>3 (0.1)</td>
<td>2 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite of death from cardiovascular causes</td>
<td>15 (0.7)</td>
<td>3 (0.1)</td>
<td>4.94 (1.43–17.06)</td>
<td>0.01</td>
</tr>
<tr>
<td>Sudden cardiac death</td>
<td>7 (0.3)</td>
<td>1 (&lt;0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death due to fatal myocardial infarction</td>
<td>5 (0.2)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of recent myocardial infarction on autopsy</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death due to congestive heart failure</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death during or after percutaneous transluminal coronary angioplasty or CABG</td>
<td>1 (&lt;0.1)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death due to fatal stroke</td>
<td>2 (0.1)</td>
<td>2 (0.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite of cardiovascular complications, excluding new-onset atrial</td>
<td>63 (2.8)</td>
<td>71 (3.2)</td>
<td>0.87 (0.62–1.22)</td>
<td>0.42</td>
</tr>
<tr>
<td>Composite of new-onset atrial fibrillation or transient ischemic attack</td>
<td>19 (0.9)</td>
<td>28 (1.3)</td>
<td>0.67 (0.37–1.19)</td>
<td>0.17</td>
</tr>
<tr>
<td>Composite of all cardiovascular complications</td>
<td>81 (3.6)</td>
<td>91 (4.1)</td>
<td>0.87 (0.65–1.18)</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Patients with renal damage should be treated with a RAS blocker
Effect of ACEi or ARBs on renal outcomes: systematic review and meta-analysis

Degree of change of SBP and proteinuria reduction

<table>
<thead>
<tr>
<th>Mean difference SBP (95%CI)</th>
<th>Studies (N)</th>
<th>Albuminuria change (mg/day)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-7.6 (-9.8 to -5.5)</td>
<td>23 (1668)</td>
<td></td>
<td>-83.12 (-126.8 to -39.5)</td>
</tr>
<tr>
<td>-1.2 (-3.2 to -0.7)</td>
<td>15 (1734)</td>
<td></td>
<td>32.73 (-51.9 to -13.6)</td>
</tr>
<tr>
<td>3.41 (0.9 to 5.9)</td>
<td>17 (2312)</td>
<td></td>
<td>1.81 (-2.47 to 6.1)</td>
</tr>
</tbody>
</table>

## Effect of ACEi or ARBs on renal outcomes: systematic review and meta-analysis

### Degree of change of SBP and RR for ESRD

<table>
<thead>
<tr>
<th>Mean difference (95%CI)</th>
<th>ACEi / ARB</th>
<th>Other drugs</th>
<th>RR for ESRD</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 6.9 (- 9.1 to - 4.8)</td>
<td>117 / 1346</td>
<td>155 / 1291</td>
<td></td>
<td>0.74 (0.59-0.92)</td>
</tr>
<tr>
<td>- 1.6 (- 2.8 to - 0.4)</td>
<td>273 / 6344</td>
<td>356 / 6327</td>
<td></td>
<td>0.77 (0.67-0.89)</td>
</tr>
<tr>
<td>1.5 (0.1 to 2.9)</td>
<td>206 / 11049</td>
<td>397 / 26043</td>
<td></td>
<td>0.90 (0.72-1.12)</td>
</tr>
</tbody>
</table>

---

Daring to Practice Low-Cost Medicine in a High-Tech Era

Sean Palfrey, M.D.

A child with chest pain or tics, a toddler who is limping, a 12-year-old girl with abdominal pain or headaches, an infant whose fever does not respond to antibiotics — these are age-old challenges that pediatricians face. I have been teaching pediatrics to residents and medical students for more than three decades, but over the past few years, as I’ve watched trainees at work, sitting at their computers, and ordering and monitoring tests, I’ve grown worried that the practice of medicine has tipped out of balance.

Recent advances in scientific knowledge and technology have resulted in the development of a vast array of new tests, new pharmacologic agents, and new diagnostic and therapeutic procedures. These are so accessible to us in the United States that few of us can resist using them at every opportunity. By being impatient, by mistrusting our hard-earned clinical skills and knowledge, and by giving in to the pressures and opportunities to test too much and treat too aggressively, we are bankrupting our health care system. Ironically, by practicing this way, we are perpetuating serious economic and racial disparities and have built a health care system that rates in the bottom tier among all developed countries in many categories of children’s health outcomes.

Most doctors are intensely risk-averse. We don’t tolerate uncertainty. Not wanting anything bad to happen, we reflexively overtest and overtreat in order to protect our patients — and ourselves. We feel judged by everyone — ourselves, our colleagues, our patients, the health care system, and the lawyers. The meaning of “first do no harm” has changed for us. We feel that “doing everything” is the best practice and the way to prevent harm, and we believe that it will shelter us from blame. We order tests and treatments because they are available to us, well before their importance has been established, their safety has been determined, and their cost-benefit ratio has been calculated.

The evaluation of a child with fever and cough is a good example. There are many possible causes, and we have a huge battery of available tests that might give us potentially relevant information. But why should we no longer trust our physical exam, our knowledge of the possible causes and their usual courses,
## Some comparisons of TODs

<table>
<thead>
<tr>
<th>Markers</th>
<th>CV predictive value</th>
<th>Availability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiography</td>
<td>++</td>
<td>++++</td>
<td>+</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Carotid Intima-Media Thickness</td>
<td>++++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Arterial stiffness (Pulse wave velocity)</td>
<td>++++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Ankle-Brachial index</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Est. Glomerular Filtration Rate or Creatinine Clearance</td>
<td>++++</td>
<td>++++</td>
<td>+</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>++++</td>
<td>++++</td>
<td>+</td>
</tr>
</tbody>
</table>

*2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension*
Established Subclinical Organ Damage

- Electrocardiographic LVH (Sokolow-Lyon > 38 mm; Cornell > 2440 mm*ms) or:
- Echocardiographic LVH° (LVMI M > 125 g/m², W > 110 g/m²)
- Carotid wall thickening (IMT > 0.9 mm) or plaque
- Carotid-femoral pulse wave velocity > 12 m/s
- Ankle/brachial BP index < 0.9
- Slight increase in plasma creatinine:
  - M: 115–133 μmol/l (1.3–1.5 mg/dl);
  - W: 107–124 μmol/l (1.2–1.4 mg/dl)
- Low estimated glomerular filtration rate † (< 60 ml/min/1.73 m²)
  or creatinine clearance ‡ (< 60 ml/min)
- Microalbuminuria 30–300 mg/24 h or albumin-creatinine ratio:
  - ≥ 22 (M); or ≥ 31 (W) mg/g creatinine

2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:
ESH-ESC Task Force on the Management of Arterial Hypertension
Why endothelial function measurement is not included among markers of target organ damage in hypertension in ESH/ESC Guidelines?
Endothelial function

- Can be assessed by an unique method?
- Can be used to better stratify CV risk?
- Can be used to better establish the efficacy of treatment?
Endothelial function

- Can be assessed by an unique method?
- Can be used to better stratify CV risk?
- Can be used to better establish the efficacy of treatment?
The Assessment of Endothelial Function
From Research Into Clinical Practice

Andreas J. Flammer, MD; Todd Anderson, MD; David S. Celermajer, MD; Mark A. Creager, MD; John Deanfield, MD; Peter Ganz, MD; Naomi M. Hamburg, MD; Thomas F. Lüscher, MD; Michael Shechter, MD; Stefano Taddei, MD; Joseph A. Vita, MD; Amir Lerman, MD

---

**Trigger to assess endothelial function**

- Infusion of endothelial-dependent vasodilators
  - Coronary circulation
  - Peripheral
- Reactive hyperemia
  - FMD
  - EndoPAT

---

<table>
<thead>
<tr>
<th>Feature</th>
<th>Coronary circulation</th>
<th>Peripheral</th>
<th>FMD</th>
<th>EndoPAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Invasive</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Predictive</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Reversible</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Control vessel</td>
<td>+ (control segments)</td>
<td>+</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Not expensive</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Low-risk</td>
<td>+/-</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Operator independent</td>
<td>+/-</td>
<td>+/-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Easy to use</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

*(Circulation. 2012;126:753-767.)*
FLOW MEDIATED DILATION
the physiological testing of endothelial function

ischemia (200 mmHg, 5 minutes) to
induce post-ischemic reactive hyperemia
in the microcirculation and flow increase
in the brachial artery

Endothelium-dependent response (FMD):
\[ \uparrow \text{diameter of the brachial artery induced by shear stress} \]

Endothelium-independent response:
\[ \uparrow \text{diameter of the brachial artery after GTN (s.l.)} \]
Experimental Model


Coefficients of variation (mean values and 95% intervals) for flow-mediated dilation in the different Centers.

Overall, coefficients of variation were 9.9±8.4% and 12.9±11.6% for the intra and inter-session FMD measures, respectively.

The inter-session coefficient of variation of GTN response between assessments obtained at day 1a and day 30 was 19.7±16.8%
Endothelial function

- Can be assessed by an unique method?
- Can be used to better stratify CV risk?
- Can be used to better establish the efficacy of treatment?
### Strong association among CV risk factors, oxidative stress and endothelial dysfunction

<table>
<thead>
<tr>
<th>Cardiovascular Risk Factors</th>
<th>Endothelial Dysfunction</th>
<th>Presence of Oxidative Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial history of CVD</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Age</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Menopause</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hypertension</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Smoking</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Hyperhomocysteinemia</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Clinical Correlates and Heritability of Flow-Mediated Dilation in the Community

The Framingham Heart Study

2883 subjects (1526 women, 1357 men)

Flow-Mediated Dilation (mm)

Quintile of Risk Score

$p < 0.0001$

Benjamin EJ et al. Circulation 2004
Relationship between vasodilation to acetylcholine and total cardiovascular risk

Vasodilation to Ach (%) vs. Total Cardiovascular Risk (Number of events/100 individuals in 10 years)

$r = -0.84$, $P < 0.005$
Endothelial function

Receiver operating characteristic curves for FRS (AUC=0.74), brachial FMD (AUC=0.65), and FRS+FMD (AUC=0.74) to predict incident CVD events

Multi-Ethnic Study of Atherosclerosis (MESA); Yeboah, J. et al. Circulation 2009
The direct relationship between endothelium-dependent relaxation and global CV risk makes unesefull the determination of endothelial function
Endothelial Function Assessed by Vascular Reactivity and Cardiac Events

Multivariant analysis of hazard ratio of present studies reporting association between coronary or peripheral endothelial function and cardiovascular events

Lerman A & Zeiher A Circulation 2005
Association of endothelial dysfunction with CV risk profile

Demonstrated in untreated patients with CV risk factors

Endothelial dysfunction as independent prognostic marker of CV clinical events

Demonstrated in high risk patients with CV disease and pharmacological treatment
Treatment of Endothelial Function and Prognosis

Modena MG et al. JACC 2002
Relationship between endothelial dysfunction and prognosis

Endothelial function vs. CV risk

- No events
- Treatment
- Events

Graph showing the relationship between endothelial dysfunction and CV risk, indicating a decrease in CV risk with improved endothelial function following treatment.
## Effect of pharmacological treatment on endothelial dysfunction

<table>
<thead>
<tr>
<th></th>
<th>ACE-I</th>
<th>AT₁-Ant</th>
<th>Ca-Ant</th>
<th>Statins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduit arteries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>coronary</em></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>peripheral</em></td>
<td>+</td>
<td>-/+</td>
<td>-/+</td>
<td>+</td>
</tr>
<tr>
<td>Subcutaneous microcirculation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>no data</td>
</tr>
<tr>
<td>Muscle microcirculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>acetylcholine, metacholine</em></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><em>bradikynin</em></td>
<td>+</td>
<td>no data</td>
<td>+</td>
<td>no data</td>
</tr>
</tbody>
</table>
Why endothelial function measurement is not included among markers of target organ damage in hypertension in ESH/ESC Guidelines?
### Some comparisons of TODs

<table>
<thead>
<tr>
<th>Markers</th>
<th>CV predictive value</th>
<th>Availability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrocardiography</td>
<td>++</td>
<td>++++</td>
<td>+</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Carotid Intima-Media Thickness</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td><strong>Arterial stiffness (Pulse wave velocity)</strong></td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Ankle-Brachial index</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Coronary calcium content</td>
<td>+</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>Cardiac/Vascular tissue composition</td>
<td>?</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Circulatory collagen markers</td>
<td>?</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td><strong>Endothelial dysfunction</strong></td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Cerebral lacunae/White matter lesions</td>
<td>?</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>Est. Glomerular Filtration Rate or Est. Creatinine Clearance</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>+++</td>
<td>++++</td>
<td>+</td>
</tr>
</tbody>
</table>

---

2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension:  
ESH-ESC Task Force on the Management of Arterial Hypertension
Why endothelial function measurement is not included among markers of target organ damage in hypertension in ESH/ESC Guidelines?

Because no one endothelial guy is involved in the Guidelines Task Force!!!