

Source: ONS (ICD9 390-459; ICD10 100-199)

Evolution of Atherosclerosis

Genetic Environmental

Coronary Heart Disease Mortality in Beijing 1984-1999

1822 Extra deaths Attributable to Risk Factor Changes

Cholesterol	77%
Diabetes	19%
BMI	4%
Smoking	1%

642 fewer deaths by treatments

AMI treatments	41%					
Hypertension treatment	24%					
Secondary prevetion	11%					
Heart failure	10%					
Aspirin for Angina	10%					
Angina: CABG & PTCA	2%					

Critchley J. Circulation, 2004;110:1236-1244

Heidenreich Circ 2011; 123: 933-944

Emergence of Health Maintenance as the Business of Health Care

Eastman Kodak filed for bankrupcy on Jan 19 2012 after 131 years

"Move from product orientated industry to customer orientated one" Asch NEJM 2012;367:888-9

Lifetime Management of Atherosclerosis Risk

Early intervention pays long term dividends

Prevalence of Atherosclerosis by Donor Age

Raitakari et al JAMA 2003;290;2277-2283

Epidemiology and Prevention

Childhood Physical, Environmental, and Genetic Predictors of Adult Hypertension The Cardiovascular Risk in Young Finns Study

Jonna Juhola, MD; Mervi Oikonen, PhD; Costan G. Magnussen, PhD; Vera Mikkilä, PhD; Niina Siitonen, PhD; Eero Jokinen, MD, PhD; Tomi Laitinen, MD, PhD; Peter Würtz, PhD; Samuel S. Gidding, MD; Leena Taittonen, MD, PhD; Ilkka Seppälä, MSc; Antti Jula, MD, PhD; Mika Kähönen, MD, PhD; Nina Hutri-Kähönen, MD, PhD; Terho Lehtimäki, MD, PhD; Jorma S.A. Viikari, MD, PhD; Markus Juonala, MD, PhD; Olli T. Raitakari, MD, PhD

Conclusions—Prediction of adult hypertension was enhanced by taking into account known physical and environmental childhood risk factors, family history of hypertension, and novel genetic variants. A multifactorial approach may be useful in identifying children at high risk for adult hypertension. (*Circulation.* 2012;126:402-409.)

Circulation. 2012;126:402-409

Framingham Heart Study : Lifetime Risk

Lifetime Risk of Death from CV Disease

Berry NEJM 2012; 366: 321-329

Age and CV Risk in Diabetes

Booth Lancet 2006; 368: 29-36

Independent and Graded Association between GFR and CVD

LDL Cholesterol and Coronary Heart Disease among Black Subjects by PCSK9^{142X} or PCSK9^{679X} Allele

ESC CV Prevention Guidelines 2012

													15% an 10%-1 5%-9%	d over 4% 10-yes fatel	er risk of											
	WOMEN 2% populations at 1% 1% low CVD risk													IEN	I											
			N	lon	-sm	lok	er			Sn	nok	er		Aae	N	lon	-sm	ioke	er			Sm	ıok	er		
		180	4	5	6	6	7		9	9	11	12	14	5	8	9	10	12	14	1	5 1	7	20	23	26	
		160	3	3	4	4	5		6	6	7	8	10		5	6	7	8	10	1	0 1	2	14	16	19	
		140	2	2	2	3	3		4	4	5	6	7	65	4	4	5	6	7		7	8	9	11	13	
		120	1	1	2	2	2		3	3	3	4	4		2	3	3	4	5		5	5	6	8	9	
													_		_				_	_					_	
		180	3	3	3	4	4		5	5	6	7	8		5	6	7	8	9	1	0 1	1	13	15	18	
		160	2	2	2	2	3		3	4	4	5	5		3	4	5	5	6		7	8	9	11	13	
		140	1	1	1	2	2		2	2	3	3	4	60	2	3	3	4	4		5	5	6	7	9	
		120	1	1	1	1	1		1	2	2	2	3		2	2	2	3	3		3	4	4	5	6	
		180	1	1	2	2	2		2	3	2	4	4		3	А	4	5	6		<u>د</u>	7	2	10	12	
		160			1	1	1		2	2	2	2	2		2	7	2	2	4			2	6	7	8	
		140		1	÷	÷	÷		1	1	1	2	2	55	1	2	2	2	7		2	2	4	5	6	
_	_	120	0	0	1	1	1		1	1	1	1	1		1	1	1	2	2		2	2	3	3	4	
1	3																	-	-							
		180	1	1	1	1	1		1	1	2	2	2		2	2	3	3	4	4	1	4	5	6	7	
		160	0	0	1	1	1		1	1	1	1	1		1	1	2	2	2		z	3	3	4	5	
	Ins	140	0	0	0	0	0		1	1	1	1	1	50	1	1	1	1	2		2	2	2	3	3	
		120	0	0	0	0	0		0	0	0	1	1		1	1	1	1	1		1	1	2	2	2	
															_											
4	ŏ	180	0	0	0	0	0		0	0	0	0	0		0	1	1	1	1		1	1	1	2	2	7 ESC
-		160	0	0	0	0	0		0	0	0	0	0		0	0	0	1	1		1	1	1	1	1	200
1	2 ST	140	0	0	0	0	0		0	0	0	0	0	40	0	0	0	0	0		D	1	1	1	1	9
Ű	0	120	0	0	0	0	0		0	0	0	0	0		0	0	0	0	0)	0	0	1	1	
			4	5	6	7	8		4	5	6	7	8		4	5	6	7	8		1	5	6	7	8	
											T	ota	l cho	olesterol	(mr	nol	/L)				150	20	00 2	50 3	300	
																						n	ng/d	1L		

Low CVD countries are Andorra, Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, Malta, Monaco, The Netherlands, Norway, Portugal, San Marino, Slovenia, Spain, Sweden, Switzerland, United Kingdom.

European Heart Journal 2012; 33: 1635-1701

Importance of Lifetime Risk

Short Term v. Lifetime Risk in USA

Non-smoking men <45yrs</p>
All women <65yrs</p>
<10% 10yr CHD Risk</p>

Marma Circ 2009;120:384-390

□56% of US adults (87,000,000) have low (<10%) 10yr and high lifetime (≥39%) risk

Marma Circ Cardiothoracic Qual Outcomes 2010;3:8-14

Joint British Societies (JBS3): CV Risk Management Lifetime risk calculator

New metrics for communication
 Heart age
 Age at 1st CV event

UU Cardiovascular Risk Assessment

Your heart age is about

57

On average, expect to survive to age 66 free of heart attack or stroke

Interventions

Systolic Blood Pressure

Cholesterol Ratio:

Weight (Kg)

Future smoking category

Moderate smoker	Ŧ
-----------------	---

Reset

New UK JBS3 Lifetime Risk Calculator

What we expect to happen in 10 years to 100 people like you

Full Screen

Interventions

What we expect to happen in 20 years to 100 people like you

Full Screen

Interventions

How early should prevention start?

Benefit of Smoking Cessation

Obesity in the Young

13 year old boy weighing 11.2kg more than normal runs 33% increased probability of a CV event < 60Yrs

"The commonest instruments of suicide are a knife and fork"

Martin Fischer

Childhood Adiposity, Adult Adiposity, and Cardiovascular Risk Factors

BACKGROUND

Obesity in childhood is associated with increased cardiovascular risk. It is uncertain whether this risk is attenuated in persons who are overweight or obese as children but not obese as adults.

Persons who were overweight or obese during childhood but were nonobese as adults had risks of the outcomes that were similar to those of persons who had a normal BMI consistently from childhood to adulthood (P>0.20 for all comparisons).

Juonala NEJM 2011; 365: 1876-1885

Responsibility for Childhood Obesity?

Who is at fault for obesity? Who is reponsible for addressing it?

Potential Benefit of CV RF treatment in Obesity

Bibbins-Domingo NEJM 2007; 357: 2371-2379

Number of Prescriptions for Statins each Quarter in England

Items (000s)

Polypill Concept

A pill to prevent 80% of heart attacks

Polypill would contain a statin, three antihypertensives, folic acid, and aspirin pp1407, 1419, 1423, 1427

326: 1407-1466 No 7404 28 JUNE 2003 Clinical research ISSN 0959-8138

A reasonable next step for ATP IV?

Statin Therapy in Young Adults

Ready for Prime Time?

Mark J. Pletcher, MD, MPH,*† Stephen B. Hulley, MD, MPH* San Francisco, California

....Consider statins for younger persons, perhaps starting at 30 in those with risk factors that convey high lifetime risk (as opposed to 10 yr risk) for CHD

Pletcher JACC 2010; 56: 637-640

Ideal CV Health: How Often Do We Get There? 1933 participants in Heart SCORE-only 1 with 7 components

AHA Definition Non smoking BMI <25kg/m² Physical Activity Recommended diet

Untreated TC <200 mg/dl Untreated BP <120/80 mmHg Untreated FBG <100 mg/dl

Roger Circ 2011; 123: 459-463

Cost Effectiveness of Preventive Interventions

Chokshi NEJM 2012;367:295-6

Taxation of Food and Drink

Sugar, rum and tobacco are commodities which are nowhere necessaries of life, which are become objects of almost universal consumption, and which are therefore extremely proper subjects of taxation.

Adam Smith, The Wealth of Nations, 1776

Brownell NEJM 2009;360:1805-1808

AHA Policy Statement

Value of Primordial and Primary Prevention for Cardiovascular Disease

A Policy Statement From the American Heart Association

CV disease is preventable "Life-long Rx likely to be cost-effective and often cost saving" Circulation 2011;124:967-990

"It should be the function of medicine to have people die young as late as possible"

Ernest L. Wynder M.D.