Personalized Cardiovascular Medicine and Drug Development

Joseph Loscalzo, M.D., Ph.D. Brigham and Women's Hospital Harvard Medical School Boston, MA

Outline

- Overview of Pharmacology and Drug Development
- Disease Networks and Identification of Drug Targets
- Quantitative (Patho)phenotypes in Clinical Trials
- Network Dynamics and Implications for Clinical Trial Design
- Approaches to Clinical Trial Design in the Era of Personalized Therapies

Overview of Pharmacology and Drug Development

Brief History: Key Paradigms

- Empirical Physiological Effects: Phenotypic Screening
- Toxicity Assessment: Animal (and Human) Experimentation
- Reductionist Drug Target Identification— Ehrlich's 'Magic Bullet' Concept
- Chemotherapy & Receptor Constructs
- Medicinal Chemistry, Structure-Activity Relationship, and Mechanisms of Drug Action: Semi-empiric Drug Screening
- Protein Structure and Rational Drug Design

FDA Approved Drugs: 2000-2012

Reasons for Declining Productivity

- Regulatory environment
- Increasing need to explore novel targets
- Easy targets have been exhausted.
- Increasing attrition rate for developing drugs
- The intrinsically flawed reductionist approach to drug development, i.e., the need to identify a single drug target with a single "magic bullet"...a timely example follows.

Homocysteine Theory of Atherothrombosis

- First proposed by McCully (*Am.J.Path.* 1969; 56:111)
- Evidence from over 30 studies suggests that even mild-to-moderate elevations of plasma homocysteine confer a significant, independent risk for atherothrombosis.
- Hyperhomocysteinemia found in 20-40% of patients with vascular disease, but in only 2% of unaffected individuals

Homocysteine Metabolism

Vitamin Rx, Homocysteine, & CV Risk

<u>NORVIT Trial</u>

HOPE-2 Trial

--Bonaa KH, et al., NEJM, 2006

--HOPE-2 Investigators, NEJM, 2006

Folate, B₁₂, and Homocysteine

Methionine Folate, B12 Homocysteine B6 Cystathionine

Biomedicine in Network Context

Biomedicine in Network Context

Biomedicine in Network Context

Folate, B₁₂, and Homocysteine

Disease Networks and Identification of Drug Targets

Enhancing Productivity in Drug Discovery

Can we move from reductionism to systems-based approaches in drug discovery? The universe within which a drug acts considered as a complex networked biological system....

Essential vs. Disease Genes in Network Medicine

Disease genes are largely nonessential and do not encode hubs.

Essential proteins
 Disease proteins

--Barabasi, et al., Nat Revs Genet 2011;12:56-68

Network Modularity and Disease

Disease modules are topologically and functionally distinct network modules.

- O Topologically close genes (or products)
- Functionally similar genes (or products)
- Disease genes (or products)
- Undirectional interactions
- Directional interactions

--Barabasi, et al., Nat Revs Genet 2011;12:56-68

Disease Module Derivation

- Identify disease phenotype of interest (example--pulmonary arterial hypertension).
- Ascertain disease network components.
- Construct disease network (*i.e.*, determine the structural or functional linkages among module components).
- Identify disease module(s) within network.

PAH Network Components (131 Nodes, 26 Functional Pathways)

Disease components derived from curated literature, or gene, protein, or metabolite profiles.

PAH Network Components (131 Nodes, 26 Functional Pathways)

Consolidated Interactome (11,643 Nodes 100,791 Edges)

Consolidated interactome of all known physical interations: PPIs and Protein Complexes (CORUM), Regulatory Protein-DNA Interaction (TRANSFAC), Metabolic Enzyme-coupled Interactions (MCIs), Kinase Network

PAH Network Components (131 Nodes, 26 Functional Pathways) Мар Consolidated Interactome (11,643 Nodes 100,791 Edges)

PAH Network Components (131 Nodes, 26 Functional Pathways) Мар Consolidated Interactome (11,643 Nodes 100,791 Edges)

PAH Network (115 Nodes, 255 Edges, Largest Connected Component = 82 Nodes)

Interactome-derived PAH Network

MicroRNAs as Network Filters

•Select miRNAs are induced by stresses and disease states.

•Unbiased ascertainment of miRNA targets

• Induced miRNAs target common pathways.

•Induced miRNAs suppress common mRNA targets.

--Chan et al., Cell Metab 2009;10:273-84

MicroRNA Network Analysis in PAH:

	TGF-β		
miR-200 family miR-205 miR-20a miR-210 miR-23ab miR-23ab miR-24 miR26a miR-373 miR-491 miR-93	Let-7 family miR-135 miR-15b miR-155 miR-16 miR-181 family miR-17~92 cluster/miR-106a miR-21/590-5p miR-192 miR-27a/b miR-199a miR-29b miR-204/211 miR-125b miR-224 miR-31 miR-31 miR-130 family/miR-301	miR-10a miR-132 miR-133 miR-140 miR-146 miR-208 miR-221/222 miR-302 miR-302 miR-34 miR-9 miR-320	
Нурохіа	miR-214 miR-101 miR-122 miR-126 miR-148/ miR-152 miR-195 miR30b miR-7 miR-98	Inflammation	

MicroRNA Network Analysis in PAH

miR26a miR-29b miR-204/211 miR-302 miR-373 miR-125b miR-224 miR-34 miR-491 miR-31 miR-31 miR-302 miR-93 miR-130 family/miR-301 miR-320 miR-320 miR-130 family/miR-301 miR-122 miR-320 miR-320 Hypoxia miR-214 miR-101 miR-122 miR-320	miR-200 family miR-205 miR-20a miR-210 miR-23ab miR-24	TGF-β Let-7 family miR-135 miR-15b miR-155 miR-16 miR-181 family miR-17~92 cluster/miR-106a miR-21/590-5p miR-192 miR-27a/b miR-199a	miR-10a miR-132 miR-133 miR-140 miR-146 miR-208 miR-221/222
miR-126 miR-148/ miR-152 miR-195 miR30b	miR26a miR-373 miR-491	miR-29b miR-204/211 miR-125b miR-224 miR-31	miR-34 miR-9
	Нурохіа	miR-126 miR-148/ miR-152 miR-195 miR30b	Inflammation

PAH and miR-21 Disease Module

miR-21 serves as a negative regulator of pathogenic pulmonary vascular responses in PAH.

PAH and miR-21 Disease Module: Potential Drug Targets

Disease Modules and Therapeutics

Drug targets are typically characterized in isolation from the disease module.

- Functionally similar genes (or products)
- Disease genes (or products)
- Directional interactions

--Modified from Barabasi et al., Nat Revs Genet 2011;12:56-68

Target-based Screening

Facilitated by:

- Genomic datasets for target
 identification
- Structural tools, including protein X-ray crystallogaphy, NMR spectroscopy, computational modeling
- Large real and virtual compound libraries
- High-throughput screening technologies

Disease Modules and Therapeutics

Drug targets are better characterized with regard to their effects on phenotype.

--Modified from Barabasi et al., Nat Revs Genet 2011;12:56-68

--Swinney & Anthony, Nature Rev Drug Disc 2011;10:507-519

The Promise of Personalized Medicine: Find the Target

--Wagle et al., J Clin Oncol 2011;29:3085-3096

The Promise of Personalized Medicine: Inhibit the Target

--Wagle et al., J Clin Oncol 2011;29:3085-3096

The Peril of Personalized Medicine with Conventional Strategy

--Wagle et al., J Clin Oncol 2011;29:3085-3096

Pathway Targeting: Combination Rx

Combination therapy: dabrafenib (BRAF inhibitor) & trametinib (MEK inhibitor)

--Flaherty et al., NEJM 2012;367:1694-1703

Disease Modules and Therapeutics

Disease modules should be targeted with rational polypharmacy for optimal effects on phenotype.

--Modified from Barabasi et al., Nat Revs Genet 2011;12:56-68

Drug Toxicities as Systems Response

Unrecognized drug targets lead to toxic phenotypes.

--Modified from Barabasi et al., Nat Revs Genet 2011;12:56-68

Drug Toxicities as Systems Response

Increased upstream species can yield toxic phenotypes.

--Modified from Barabasi et al., Nat Revs Genet 2011;12:56-68

Drug Side-effect Predictions: CETP Inhibitors

Structural similarity networks coupled with systems analysis of pathways can be used to predict adverse effects of drugs.

--Xie et al., PLoS Comp Biol 2009;5:e1000387

--after Schadt, et al., Nature Rev Drug Disc 2009;8:286-295; Barabasi, et al., Nature Rev Genet 2011; 12:56-68

Quantitative (Patho)phenotypes in Clinical Trials

Why Does Phenotype Screening Continue to Surpass Target-based Screening?

- The chosen target is wrong.
- The chosen target is reasonable, but the networked architecture of the system within which it functions is redundant, clustered, and adaptive.
- The phenotype is imprecise.
- Combinations of the above

Why Does Phenotype Screening Continue to Surpass Target-based Screening?

- The chosen target is wrong.
- The chosen target is reasonable, but the networked architecture of the system within which it functions is redundant, clustered, and adaptive.
- The phenotype is imprecise.
- Combinations of the above

Toward Precision Medicine

National Research Council of the National Academies

Recommendation for New Disease Taxonomy

- "A new disease taxonomy should be developed that would:
 - describe and define diseases based on their intrinsic biology in addition to traditional physical 'signs and symptoms';
 - go beyond description and be directly linked to a deeper understanding of disease mechanisms, pathogenesis, and treatments; and
 - be highly dynamic...continuously incorporating newly emerging...information."

Approaches to 'Exquisite' Phenotyping: Clinical Phenotypes

- Database of Genotypes and Phenotypes (dbGaP)
- Phenome-wide Association Studies (PheWas) (cf. *Denny et al., Bioinformatics* 2010;2605-1210)
- Electronic Medical Records and Genomics (eMERGE)
- Repurposing Existing Clinical (trial) Data Sets—Drug Trials-Systems Perturbations (cf. Tatonetti et al., Sci Transl Med 2012;4:125ra31; Campillos et al., Science 2008;321:263)

PheWAS

--Denny et al., Bioinformatics 2010;26:1205-1210

Approaches to 'Exquisite' Phenotyping: Other

- Imaging Data Sets & Machine Learning
- Orthogonal Unbiased Information (UK BioBank & Keystroke Data)
- Diagnostic and Drug Data Bases (cf. Ponda et al., Circulation 2012;126:270-7)

Network Dynamics and Clinical Trial Design

Systems-based Clinical Trial Design

--Fusaro et al., Circulation 2013;127:517-526

Systems-based Clinical Trial Design

--Fusaro et al., Circulation 2013;127:517-526

Systems-based Clinical Trial Design

--Fusaro et al., Circulation 2013;127:517-526

Approach to Clinical Trial Design in Systems Pharmacology Era

Clinical Trial Design

--Antman et al., WIREs Syst Biol Med 2012;10.1002

Developing New Biomarkers and Patient Reported Outcomes Measures (PROs)

- C-Path Institute (nonprofit): new biomarkers for drug-induced (renal) injury (data produced by a consortium); FDA and EMA accepted; undergoing clinical evaluation
- PROMIS (NIH PRO effort)
- C-Path Institute: PROs for specific diseases

Systems Pharmacology: Visualizing Therapeutic Actions

--From Proteostasis Web Site:

http://www.proteostasis.com/science/proteostasis_network.php

Summary

- There are major problems with current drug development paradigms.
- Systems biology and network science provide useful approaches to identifying drug targets and rational combinations of targets.
- Clinical phenotyping must become more precise and more discriminating for optimal identification of effective therapies.
- The clinical research enterprise and the drug approval process must be transformed *pari passu*.

Acknowledgements

- Stephen Chan
- Katherine Cottrill
- Farshid Garmaroudi
- Brad Maron
- Victoria Parikh
- Yingyi Zhang

- Elliott Antman
- Laszlo Barabasi
- Natalie Gulbahce
- Calum Macrae
- Scott Weiss