Inflammation and Atherosclerosis

Göran K Hansson Karolinska Institute Stockholm, Sweden

KARO

INSTITUTET

Atherosclerosis

A pathological process that causes:

- Coronary artery disease
 - Angina pectoris
 - Myocardial infarction
- Cerebrovascular disease
 - Ischemic stroke
 - Vascular dementia
- Peripheral vascular disease
 - Gangrene

Risk factors: High plasma cholesterol High blood pressure Smoking Diabetes Inflammation

Atherosclerosis is an inflammatory disease

Immune activity in plaque

- T cells, Macrophages
- HLA, costimulatory factors, and cytokines

Systemic response

– CRP, IL-6, Antibodies

Genetic association

 Alleles of immune and inflammatory genes

Immunopathogenesis

 Major effects of immune factors in model organisms HLA-DR in human plaque Jonasson & Hansson 1985

Inflammation in coronary arteries leads to release of inflammatory mediators into circulation - and triggers acute phase reaction in liver

GK Hansson N Engl J Med 2005; 352:1685-95 Inflammation (Latin, inflammare, to set on fire) is part of the complex biological response of vascular tissues to harmful stimuli, such as <u>pathogens</u>, damaged cells, or irritants.

Inflammation is a protective attempt by the organism to remove the injurious stimuli and to initiate the healing process.

A cascade of biochemical events propagates and matures the inflammatory response, involving the local <u>vascular system</u>, the <u>immune system</u>, and various cells within the injured tissue.

Wikipedia

Inflammation is typically triggered when bacterial pathogens invade the organism

Janeway's Immunobiology, 5th Ed.

Hansson-Libby-Schönbeck-Yan, Circ Res 2002

Toll-like receptors recognizing pathogen molecules trigger inflammation

Toll-like receptors can also recognize danger-associated endogenous molecules

The second secon

Ligand	Function	TLR
Hsp60	Stress inducible cytosolic heat shock protein	TLR2/TLR4
Hsp70	Stress inducible cytosolic heat shock protein	TLR2/TLR4
Gp96	Stress inducible ER heat shock protein	TLR2/TLR4
HMGB1	Chromosomal binding protein	TLR2/TLR4
ApoCIII	Apolipoprotein in VLDL	TLR2
mRNA	Intracellular nucleic acid	TLR3
Fibrinogen	Acute-phase protein	TLR4
Fibronectin EDA	ECM component	TLR4
Heparan sulfate	ECM component	TLR4
Hyaluronan fragment	ECM component	TLR4
β-defensin 2	Cationic antimicrobial peptide	TLR4
Oxidised phospholipid	Component of oxLDL	TLR4
mmLDL	Lipoprotein modified by mild oxidation	TLR4
Nucleic acids	RNA/DNA-containing immune complex	TLR7/TLR9

Lundberg & Hansson, Clin Immunol 2010

Innate immune response of macrophages is initiated by cholesterol crystals that activate the inflammasome

Hansson & Hermansson, Nature Immunol 2011

The activated T cell can instruct the B cell to make antibodies to its cognate antigen,

and activate the macrophage to promote inflammation

Hansson & Hermansson, Nature Imm 2011

Two types of immunity

<u>Innate</u>

- Macrophages, EC and other cells
- Receptors are germ-line encoded
- Broad specificities
- Modest affinities
- Rapid
- Stupid (= no memory)

Adaptive

- T and B cells
- Receptors generated by somatic rearrangement
- MHC restriction
- High specificity and affinity
- Slow
- Clever memory

Macrophages and T cells accumulate at sites of LDL retention in the forming atherosclerotic plaque

Libby, Ridker & Hansson, Nature 2011

The atherosclerotic plaque – a site of immune inflammation

Hansson & Hermansson Nature Immunol 2011

Lack of IL-1β or NLRP3 inflammasome of innate immunity dramatically reduces atherosclerosis

Duewell et al, Nature 2010

Lack of adaptive immunity leads to dramatic reduction in atherosclerosis

T and B cells Yes No

Zhou et al, Circ 2000

INFLAMMATION, ATHEROSCLEROSIS AND CORONARY ARTERY DISEASE

State-of-the-art for atherosclerosis

- The disease process is an inflammation triggered by LDL accumulation
- Inflammation is an independent risk factor
- Current markers (hsCRP) are informative their use in screening debated
- Antiinflammatory therapies should be evaluated for effects on CVD
 - TNF blockers / RA; methotrexate; statins

Innate and adaptive immune reactions cause progression of atherosclerosis

Libby, Ridker & Hansson, Nature, May 19, 2011

Mediators of cardiovascular inflammation

- Proinflammatory immune cytokines – IL-1 β , IL-18, TNF, Lymphotoxin, Interferon- γ
- Cell surface molecules of immune cells
 - CD40-CD40L; CD137-CD137L; OX40L-OX40; LIGHT-LT βR
- Eicosanoids
 - Prostaglandins
 - Leukotrienes

Vascular effects of cytokines

- Interferon-γ
 - Activate EC / MHC, LAM
 - Inhibit SMC prolif, α -actin; collagen
 - Promote MMPs, iNOS
- TNF superfamily
 - Activate EC / LAM, permeability
 - Promote MMPs, NOS
 - Cytotox (esp w IFN-γ)
 - Regulate lipid metabolism (TNF LPL, LIGHT HL)
 - Regulate mineralization (RANKL)

Therapeutic opportunities

GK Hansson & P Libby, Nature Rev Immunol 2006; 6:508-519

© 2006 Nature Publishing Group

Plaque rupture and thrombosis

Challenges in translating the biology of atherosclerosis to the clinic

- <u>Animal models</u> have provided detailed information about pathogenesis and novel principles for therapy
- But animal models, although needed, are not perfect mimicks of human disease
- Animal models are well suited for studying initiation and progression of atherosclerosis
- But we lack models for plaque activation and atherothrombosis

Challenges in translating the biology of atherosclerosis to the clinic

- <u>Genomics</u> has provided therapy targets and validation but limited fundamental novel information
- Atherosclerosis seems to depend on geneenvironment interactions with a large number of genes, each of which makes a small contribution

Progress in translating the biology of atherosclerosis to the clinic

- Humanize mouse models
 - Lipoproteins, HLA etc
- Model plaque activation, rupture, thrombosis
- Develop better biomarkers
 - Proximal immune mediators; plaque components
- Use imaging to monitor human disease
 - High-resolution anatomic; molecular imaging
- Biobank patients
 - DNA; Patological tissue: mRNA-protein-metabolites
- Clinical trials as a laboratory for discovery
- P Libby, PM Ridker, GK Hansson, Nature , May 19, 2011

Funding: Vetenskapsrådet Hjärt-Lungfonden Stiftelsen för Strategisk Forskning Vinnova European Union Leducq Foundation

Cardiovascular Research Laboratory Center for Molecular Medicine, Karolinska Institutet