Imaging Atheroma The quest for the Vulnerable Plaque

Coronary Heart Disease Remains the Leading Cause of Death in the U.S, Causing 1 Death Every Minute

Enormous failure of current methods to diagnosis CAD prior to initial sudden death or MI.

Cutlip et al. Circulation 2004; 110: 1226-1230

Evolution of Coronary Atherosclerosis

Normal coronary arteries

Asymptomatic atherosclerosis

High-risk (vulnerable) plaque

Thrombosed plaque

ACS

Progression stenosis

Stable angina Asymptomatic

Terminology for highrisk coronary plaques

EHJ 2004;25: 1-6

Vulnerable Plaque

Rupture Prone Plaque

- Large necrotic lipid core
- Thin fibrous cap
- Dense Macrophage infiltration (metalloproteinases)
- Progressive matrix degeneration
- Paucity of SMCs
- Angiographically non-significant
- Positive remodelling
- Inflammation

The Elusive Vulnerable Plaque

?

Ruptured Plaque

? = ruptured plaque except
No rupture
No erosion

Large lipid core
Thin fibrous cap
inflammation

IVUS: Plaque Composition

Calcific plaque

Fibrous

Lipid

Highly echodense and shadowing S 89% / Sp 97%

Highly echodense S?/Sp?

Echolucent zones S 78%-95% / Sp 30%

Fibrous vs lipid :S 39 -52%

Limitations of angiography Intravascular Ultrasound

Boston Scientific Ultra 2.9F 30Mhz pullback speed 0.5mm/sec

Virtual Histology™ IVUS

Post Processing Signals

Histopathology and VH

Sens 85%-95% Spec. 80%-90%

Atheroma heterogeneity

Definition of IVUS-Derived Thin-Cap Fibroatheroma (IDTCFA)

- 1. Focal (adjacent to non-TCFA)
- 2. Necrotic core ≥10%
- 3. In direct contact with the lumen
- **4. Percent area obstruction ≥40%**

VH Legend

MEDIA M

FIBROTIC FT

FIBROFATTY FF

DENSE CALCIUM

NECROTIC CORE NC

Per 3 consecutive frames with four characteristics

Incidence of IDTCFA lesions in non-culprit coronary vessels (n= 55)

	IDTCFA	IDTCFA/cm
Stable (N=32)	1.0 (0.0,2.8)	0.2 (0.0,0.7)
ACS (N=23)	3.0 (0.0, 5.0)	0.7 (0.0,1.3)
p value	0.018	0.031

Continuous variables are presented as medians (25^{th} , 75^{th} percentile) or means \pm SD when indicated.

Clustering of IDTCFA along the coronaries

Rodriguez-Granillo J Am Coll Cardiol.

Optical Coherence Tomography OCT

OCT Imaging

Pullback from distal to proximal in the coronary vessel, with contrast injection to induce a blood free field of view during 4 sec. pullback

IVUS and Optical Coherence Tomography

IVUS

OCT

Resolution

(axial) 100 - 150 µm

(lateral) 150 - 300 µm

10 - 15 μm

25 - 40 µm

Max. depth of penetration

4 - 8 mm

1 – 1.5 mm

OCT normal coronary vessel three layered appearance

OCT intimal thickening as bright homogeneous layer

diffuse

localized

Prati EHJ 2010;31:401

OCT Ca ++ and dissection

Optical Coherence Tomography

Vasovasorum

OCT culprit lesion ACS

Intracoronary thrombus

Normal reference

OCT culprit lesion Stable Angina

ODFI Plaque Rupture

optical domain frequency imaging

Incidental findings, 73 yo man, 9 month post stenting, with 2 weeks crescendo angina

OCT lipid pool with thin fibrous cap

Vulnerable Plaque?

OCT TCFA (vulnerable plaque) Thin Cap Fibro-Atheroma

OCT definition of TCFA

- Signal-rich fibrous cap
- Covering signal-poor lipid/nectrotic core
- Cap thickness < 0.2mm</p>
- Extent: > 45° vessel circumference
- At least 5 consecutive frames

Cap thickness: 0.19±0.05mm

Atherosclerotic Intima 5 years after BMS

Normal intima

Cholesterol crystals

Calcified nodule

Intima with lipid pool

Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma

Takahiro Sawada¹, Junya Shite^{1*}, Hector M. Garcia-Garcia², Toshiro Shinke¹, Satoshi Watanabe¹, Hiromasa Otake¹, Daisuke Matsumoto¹, Yusuke Tanino¹, Daisuke Ogasawara¹, Hiroyuki Kawamori¹, Hiroki Kato¹, Naoki Miyoshi¹, Mitsuhiro Yokoyama¹, Patrick W. Serruys², and Ken-ichi Hirata¹

¹Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan; and ²Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands

Aims

To evaluate the feasibility of the combined use of virtual histology (VH)-intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for detecting *in vivo* thin-cap fibroatheroma (TCFA).

Feasibility of combined use of IVUS-VH and OCT for detecting thin-cap fibroatheroma.

fib.fatty 55.8%; NC 22%

Cap thickness 40 microns

Eur Heart J. 2008 Apr 7

Feasibility of combined use of IVUS-VH and OCT for detecting thin-cap fibroatheroma:56 pts

Feasibility of combined use of IVUS-VH and OCT for detecting thin-cap fibroatheroma.

Conclusion

"Neither modality alone is sufficient for detecting TCFA. The combined use of OCT and VH-IVUS might be a feasible approach for evaluating TCFA".

Histology Fly Through

Virtual pullback distal to proximal through 1 cm diseased coronary vessel

ODFI Fly Through

Courtesy Dr Tearney MGH USA

Algorithm to detect high-risk plaque in a high-risk patient

Clinical presentation

Acute coronary syndrome
Younger < 60 yrs
Diabetes
Troponin positive

Biological marker hsCRP↑

High-risk patient

Non-invasive MSCT

Calcific plaque
Non-calcific plaque
Total coronary plaque burden

Presence of plaque

Invasive techniques

ICUS
Palpography
Thermography
OCT

High-risk plaque

CT: PLAQUE CHARACTERIZATION HIGH-RISK PLAQUE: WHERE?

Identification Vulnerable Plaque

Work in Progress

Sofar elusive

Combination non-invasive and invasive coronary Imaging
High Risk Patients

THANK YOU