Mechanical Cardiac Support in Acute Heart Failure

Michael Felker, MD, MHS
Associate Professor of Medicine
Director of Heart Failure Research
Disclosures

- Research Support and/or Consulting
 - NHLBI
 - Amgen
 - Cytokinetics
 - Roche Diagnostics
 - Otsuka
 - BG Medicine
The Evolution of Left Ventricular Assist Devices

JARVIK 2000
25 cc 90 g.

HEARTMATE II
114 cc, 340 g

HEARTMATE III
~120 cc, 350 g

HEARTMATE XVE
600 cc, 1200 g.

Duke Clinical Research Institute
Improving Survival with LVAD Therapy

REMATCH (HMVE)

INTrEPI (Novacor)

DT Registry (HMXVE)

INTERMACS Registry (Multiple Devices)

Desperation Therapy

Destination Therapy

2000 2005 2010
Indications for VAD Therapy

<table>
<thead>
<tr>
<th>Indications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge to Recovery/Explantation</td>
<td>Device intended for short term support for a condition that is anticipated to reversible</td>
</tr>
<tr>
<td>Bridge to Bridge</td>
<td>Device intended for short term support (typically inserted in an emergent situation) until a more permanent device can be implanted</td>
</tr>
<tr>
<td>Bridge to Transplant*</td>
<td>Device typically intended for short- to intermediate-term support in patients actively listed for transplantation</td>
</tr>
<tr>
<td>Bridge to Decision</td>
<td>Device inserted to support a patient in whom the ultimate therapy is not able to be determined at the time of implantation. Device may be used for short or long-term support.</td>
</tr>
<tr>
<td>Destination Therapy*</td>
<td>Device inserted with the intention of long-term support in patients who are not candidates for transplantation</td>
</tr>
</tbody>
</table>
Outline

- Which Patients?
- Which Device?
- What Next?
Clinical Profiles in AHF: Data from Euro Heart Failure Survey II

- Decomp. HF: 53%
- Pulm. Edema: 30%
- HTN HF: 9%
- Cardiogenic shock: 6%
- RHF: 2%

N=3580

Nieminen, M et al Eur Heart J 2006
Mortality in AHF by Clinical Classification

In hospital mortality

- Right HF
- HTN HF
- Shock
- Pulm edema
- Decomp HF
- De Novo AHF
- ADCHF
- All

Nieinen MS et al. Euro Heart J 2006
SBP in AHF: Higher is Better?

N=51,500

In-hospital mortality (%) vs. SBP on admission (mmHg)

Duke Clinical Research Institute

Gheorghiade M et al JAMA 2007
ADHERE CART: Predictors of Mortality

BUN 43
N=33,324

SYS BP 115
n=24,933

Less than

2.68%
n=25,122

5.49%
n=4,099

8.98%
n=7,202

21.94%
n=620

Greater than

2.14%
n=20,834

15.28%
N=2,048

6.41%
n=5,102

Highest to Lowest Risk Cohort
OR 12.9 (95% CI 10.4-15.9)

Fonarow et al., JAMA 2005
Outline

- Which Patients?
- Which Device?
- What Next?
Choices of Device

- Choices continue to evolve with changing technology
- Percutaneous
 - Intra-aortic balloon pump
 - Impella
 - Tandem-heart
 - Cancion (no longer in development)
 - ECMO
- Surgically implanted
 - Centrimag
 - Abiomed AB5000
 - Thoratec pVAD
 - Long term VADS (e.g., HeartMate II)
The Physiology of Counterpulsation

<table>
<thead>
<tr>
<th>Enhanced coronary blood flow</th>
<th>Biophysical changes that occur include:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Diastolic balloon inflation increases intra-aortic pressure and coronary perfusion</td>
</tr>
<tr>
<td></td>
<td>- MAP increases from greater increase in diastolic pressure than reduction of systolic pressure</td>
</tr>
<tr>
<td></td>
<td>- Absolute change in coronary perfusion dependent upon vasoregulation</td>
</tr>
<tr>
<td>Left ventricular unloading</td>
<td>Biophysical changes that occur include:</td>
</tr>
<tr>
<td></td>
<td>- Displacement of blood into the periphery</td>
</tr>
<tr>
<td></td>
<td>- Reduction of SBP</td>
</tr>
<tr>
<td></td>
<td>- Reduction of LVEDP</td>
</tr>
<tr>
<td></td>
<td>- Reduced LV wall stress</td>
</tr>
<tr>
<td></td>
<td>- Reduced LV O2 consumption</td>
</tr>
<tr>
<td>Improved cardiac output</td>
<td>Biophysical changes that occur include:</td>
</tr>
<tr>
<td></td>
<td>- Preserved or increased stroke volume</td>
</tr>
<tr>
<td></td>
<td>- Increased cardiac output as a result of afterload reduction</td>
</tr>
</tbody>
</table>

Rogers, J. Mechanical Devices in Cardiogenic Shock, AHA 2009
IABP as an Adjunct to Thrombolytic Therapy

Bar chart showing the mortality rates for IABP + lytic versus Lytic alone in randomized and observational studies:

- **TACTICS**
 - Randomized: 34% (IABP + lytic) vs 43% (Lytic alone); 6 months
 - Observational: 33% (IABP + lytic) vs 51% (Lytic alone)

- **Kovack**
 - Randomized: 43% (IABP + lytic) vs 21% (Lytic alone); 1 year
 - Observational: 57% (IABP + lytic) vs 15% (Lytic alone)

- **GUSTO-I**
 - Randomized: 68% (IABP + lytic) vs 67% (Lytic alone); 1 year
 - Observational: 67% (IABP + lytic) vs 67% (Lytic alone)

- **NRMI**
 - Randomized: 49% (IABP + lytic) vs 27% (Lytic alone); in-hospital

References:
- TACTICS: (n=57; P=0.23)
- Kovack: (n=46; P=0.02)
- GUSTO-I: (n=310; P=0.04)
- NRMI: (n=23,180; P<0.05)
Clinical Pearls about IABP in AHF

- Use “too early” rather than “too late”
- Often effective even in non-ischemic patients
- May be less effective in very young patients due to greater aortic distensibility
Percutaneous MCS Devices

Potential Clinical Utility of Percutaneous VADS

- Acute cardiogenic shock
- Chronic decompensated heart failure
- Post-cardiotomy
- Hemodynamically assisted high risk coronary interventions
- Supported percutaneous valve repair/replacement
- Supported ventricular arrhythmia ablation
Percutaneous Mechanical Support

TandemHeart pVAD

- Percutaneous insertion
 - 21F venous cannula passes to left atrium via a transseptal puncture
 - 15-17 F arterial cannula
 - Centrifugal flow pump that can provide 3.5-4 l/min at 7500 RPM
- Systemic anticoagulation required
- Approved for short-term support
TandemHeart

- Randomized trial of 42 patients with cardiogenic shock
 - 70% ACS
 - 30% Decompensated HF
 - 71% with shock despite IABP
- Centers implanting first patient were allowed to implant the TandemHeart in the “Roll In” phase (non-randomized).
- Mean support duration=2.5 days

Burkoff et al. Am Heart J 2006;152:469
TandemHeart Results

42 patients with cardiogenic shock randomized to IABP or TandemHeart

(A) CI (% Baseline) vs Duration of Support (hours)
(B) MAP (% Baseline) vs Duration of Support (hours)
(C) PCWP (% Baseline) vs Duration of Support (hours)
TandemHeart

- No difference in 30 day survival rates (IABP 64% vs. TandemHeart 53%)
- No difference in frequency of adverse events
Impella Recover

- Miniaturized rotary blood pump (axial flow)
- Provides up to 2.5 (percutaneous) or 5.0 (surgical) L/min at maximum speed of 50,000 rpm
- Inserted retrograde across the AoV to unload the LV
- No extracorporeal blood
- Requires heparin
Impella Trials

- **PROTECT II**: Prospective, randomized trial of Impella vs IABP in patients undergoing non-emergent high-risk PCI

- **RECOVER II**: Prospective, randomized trial of Impella vs. IABP in patients with post-MI hemodynamic instability
Cancion: Continuous Aortic Flow Augmentation

- Outflow from iliac artery and inflow to proximal descending aorta
- External pump drives the system. 2000-5400 rpm provides flows of 1.1-1.5 L/min
- Decreased afterload by reducing the inertia of a standing column of blood in the aorta at the onset of systole
MOMENTUM Trial

- 169 patients (109 device; 59 control)
- Composite primary endpoint: PCWP and days alive and out of hospital at 35 days
- Stopped for futility and excess bleeding in the treatment arm
Extracorporeal Membrane Oxygenator

- Circuit Pressure Monitors
- Artificial Lung
- Pump
- Anticoagulation Level Test Device
- Heat exchanger
- $S_{v}O_2$ Monitor
- Heater Water Bath
- Bladder box controller
- Backup Battery
Surgically Implantable Temporary MCSD

- Centrimag
- Abiomed
- Thoratec pVad
Future of Percutaneously Placed MCS

Circulite Synergy

- Surgical or percutaneous implant
- Partial cardiac assist
- Flow 2-3 l/min
- Modeling suggests reduction of LVEDP 7-10 mm Hg
- 8-12 hours of untethered support

- 14 x 49 mm
- 25 gm
So, Which Device for my patient?

- Amount of Support Needed?
 - TandemHeart > Impella > IABP

- Duration of Support?

- Other issues (e.g., PVD, active bleeding)

- Local expertise?
Where to Next?

The eventual destination may not be immediately clear
Potential Outcomes of Device Implantation

Intention at Implant

- Bridge to Recovery
- Bridge to Transplant
- Bridge to Decision
- Destination Therapy

Ultimate Indication

- Recovery/Explantation
- Transplant
- Ongoing Support
Summary and Conclusions

- Percutaneous mechanical circulatory support devices are growing in capability and complexity
- Patient selection remains the most critical component of success with these devices
- Randomized data is sparse and complicated by the critical acute illness of many of these patients
- It is likely that centers invested in percutaneous circulatory support will require >1 device to satisfy the needs of the entire population
- Conceptually we are moving from total cardiac output replacement to partial hemodynamic support