

Clinica Cardiologica Università degli Studi di Padova Direttore: Prof. Sabino Iliceto

3D ECHO TO ASSESS LEFT VENTRICULAR GEOMETRY AND FUNCTION

Luigi P. Badano**, MD, FESC

**Dr. Badano has received honoraries and research grants from GE Healthcare, Sorin cardio S.p.A., Actelion, Edwards Lifesciences *No off-label use of device

PROGRESS IN ULTRASOUND TECHNOLOGY

EPARTMENT APOOLOG

W University of Padua

REAL-TIME 3D ECHOCARDIOGRAPHY Measurement (NOT ANYMORE Calculations) of heart chamber size and function

3D QUANTITATION OF LV FUNCTION Why do we need it?

 $V = 0.85 \cdot \underline{A^2}$

Apical 4CH-view

3D QUANTITATION OF LV FUNCTION Clinical Case – Heart Failure in IHD

3D QUANTITATION OF LV FUNCTION Errors associated with biplane LV volume assessment

- 2. Image plane positioning errors as there is an assumption of orthogonality between 4CH and 2CH;
- 3. Geometric assumption errors as it assumes an ellipsoid LV shape as specified by the equation;
- 4. Boundary tracing errors.

Cumulative Error= FS + IP + GA + BT

 $V = \underline{\pi} \cdot \sum_{i=1}^{n} A_i \cdot B_i \cdot \underline{L}_n$

3D QUANTITATION OF LV FUNCTION Normal Left Ventricle

3D QUANTITATION OF LV FUNCTION Avoiding Foreshortening and IP error

- 1. The voxel based dataset is sectioned into several separate 2D planes who share a common apex thus eliminating any foreshortening;
- 2. The relationship between 2CH and 4CH are controlled thus eliminating the Image Plane positioning error.

3D QUANTITATION OF LV FUNCTION Full Volume

- 1. An apical rotation surface approximation algorhythm is used to generate volume and EF eliminating both IP and GA errors;
- 2. A voxel based semiautomated endocardial tracking algorhythm reduces the BT error.

No Residual Error

3D QUANTITATION OF LV FUNCTION Reliable Measurement of LV Geometry and Function

Mean difference ±SD vs MRI

B B IS		RT3DE	2DE
Jenkins 2004	EDV (ml)	-4±9	-54±33
	ESV (ml)	-3±18	-28±28
	EF (%)	0±7	-1±13
Caiani 2005	EDV (ml)	-4±29	-23±86
	ESV (ml)	-4±33	-19±60
	EF (%)	- 8±14	$+4\pm16$
Jacobs 2006	EDV (ml)	-14±17	-23±29
	ESV (ml)	-7±16	-15±24
	EF (%)	-1±6	1±9

3D QUANTITATION OF LV FUNCTION Reproducibility of Volumes and Ejection Fraction

Mor-Avi V et al. JACC Imaging 2009

3D QUANTITATION OF LV FUNCTION Accuracy of Volumes by Center Experience

	EDV			ESV			
	r	Blas		r	Bia	35	
All Patients	0.91	-67 ± 47 ml	-29 ± 20%	0.93	-41 ± 46 ml	-27 ± 30%	
Site A	0.93	-37 ± 27 ml	$-19 \pm 13\%$	0.92	-18 ± 30 ml	$-15 \pm 25\%$	
Site B	0.95	-63 ± 43 ml	$-29 \pm 20\%$	0.96	$-31 \pm 42 ml$	$-24 \pm 32\%$	
Site C	0.92	$-72 \pm 55 \text{ ml}$	$-29 \pm 22\%$	0.94	-44 ± 54 ml	$-26 \pm 32\%$	
Site D	0.89	-89 ± 33 ml	$-36 \pm 13\%$	0.90	-63 ± 39 ml	$-39 \pm 24\%$	

Mor-Avi V et al. JACC Imaging 2009

3D QUANTITATION OF LV FUNCTION Accuracy of Volumes by Tracing Modality

Actual Volume= 150 ml

Mor-Avi V et al. JACC Imaging 2009

3D QUANTITATION OF LV FUNCTION Technical Factors Affecting LV Assessment

Muraru D, Badano LP. Eur J Echocard 2009 (Abstract)

3D QUANTITATION OF LV FUNCTION Semiautomatic Border Detection Sensitivity

25%

LV ESV= 83 ml LV EF= 50% ED Shape= 34% **ES Shape= 27%**

LV EDV= 155 ml LV ESV = 84 mlLV EF = 46%ED Shape= 32% ES Shape= 27%

LV EDV = 125 mlLV ESV = 60 mlLV EF= 52% ED Shape= 26% ES Shape= 20%

Muraru D, Badano LP. EurJ Echocard 2009 (Abstract)

3D QUANTITATION OF LV FUNCTION Reproducibility of Volumes and Ejection Fraction

NI T	Interobserver Agreement			Intraobserver Agreement		
K)	Intraclass correlation 95% CI		Intraclass correlation	95%CI		
2D		DI				
End-diastolic volume	0.58	-0.08	0.89	0.80	0.35	0.95
End-systolic volume	0.83	0.41	0.96	0.89	0.58	0.97
Ejection Fraction	0.94	0.74	0.99	0.92	0.70	0.98
3D	1 Same					
End-diastolic volume	0.99	0.96	1.00	1.00	0.97	1.00
End-systolic volume	1.00	0.96	1.00	0.99	0.93	1.00
Ejection Fraction	0.98	0.89	1.00	0.99	0.94	1.00

3D QUANTITATION OF LV FUNCTION Test-retest Variability vs MRI!

Magnetic Resonance Imaging vs. RT-3DE vs 2DE (n= 50)

	Baseline	1-yr F-Up	р	r ART-3DE	r ΔRT-2DE
EDV (ml)	192±53	187±60	<0.01	0.47 (<0.01)	0.02 (NS)
ESV (ml)	104±51	95±53	<0.01	0.44 (<0.01)	0.17 (NS
EF (%)	48±12	51±12	<0.01	0.58 (<0.01)	-0.03 (NS)

Jenkins C. et al. Am J Cardiol 2007

3D QUANTITATION OF LV FUNCTION Effect of LV Size on Test-retest Variability

Correlations vs Magnetic Resonance Imaging

	RT-	-3DE	2DE		
ĸĴ	EDV< 180 ml	EDV> 180 ml	EDV< 180 ml	EDV> 180 ml	
EDV (ml)	r= 0.69 p<0.01	r= 0.37 p= 0.05	r= 0.11 p=0.63	r= 0.14 p= 0.49	
ESV (ml)	r= 0.83 p<0.01	r= 0.34 p= 0.08	r= 0.20 p=0.37	r= 0.17 p= 0.39	
EF (%)	r= 0.64 p<0.01	r= 0.32 p= 0.10	r= -0.15 p= 0.51	r= 0.03 p= 0.87	

Jenkins C. et al. Am J Cardiol 2007

3D QUANTITATION OF LV FUNCTION Effect of Image Quality on Test-retest Variability

Correlations vs Magnetic Resonance Imaging

	RT	-3DE	2DE		
ĸĮ	Good Images	Poor Images	Good Images	Poor Images	
EDV (ml)	r= 0.79 p<0.01	r= 0.57 p< 0.01	r= 0.16 p<0.63	r= -0.07 p= 0.76	
ESV (ml)	r= 0.74 p<0.01	r= 0.45 p= 0.05	r= 0.31 p<0.19	r= 0.19 p= 0.38	
EF (%)	r= 0.58 p<0.01	r= 0.57 p< 0.01	r= -0.08 p<0.68	r= 0.16 p= 0.51	

University of Padua

3D QUANTITATION OF LV FUNCTION

Pros:

- No LV foreshortening
- No geometric assumption about LV shape
- Semiautomatic tracking
- Accurate
- Reproducible

Cons:

- Multiple heart beat acquisition (AF?)
- Off-line process
- Frame-rate 20-25 fps
- Feasibility
- Time consuming
- Costs

3D QUANTITATION OF LV FUNCTION 3rd Generation 3D Scanners: Single- vs Multi-beat Acquisition

- Lower spatial resolution

- Low FR (13±3 vps)

+ No breathhold
+ Irregular rhythm (AFib)
+ Instantaneous acquisition
+ Real-time
University of Padua

+ Higher spatial resolution+ Superior FR (52±16 vps)

- Breathhold
- Regular rhythm
- 4x acquisition time

3D QUANTITATION OF LV FUNCTION Rapid on-board LV quantitation: *4D AutoLVQ*

Muraru D, Badano LP et al. Eur J Echocardiogr 2010

3D QUANTITATION OF LV FUNCTION Agreement of *4D AutoLVQ* volumes with CMR

Manual correction

University of Padua

No manual correction

Muraru D, Badano LP et al. Eur J Echocardiogr 2010

3D QUANTITATION OF LV FUNCTION 3rd Generation 3D Echo Scanners

Pros:

- No LV foreshortening
- No geometric assumption about LV shape
- Up to 10 equivalent planes
- Semiautomatic tracking
- Accurate
- Reproducible University of Padua

Pros:

- Singliple/hea/fultipleabquisitiont(AF?) a Offisitiop (deEspts feasible)
- On hime rate COS25 fps
- Frasikihate 52 vps
- Trasibilityuming
- **Cinsts** saving
- **Cons:**
- (Costs)

3D QUANTITATION OF LV FUNCTION Clinical Significance of Increased Accuracy

2D EF band	2D pts (no)	Re-allocation by EF 35%	Re-allocation by EF 40%
≤25%	32	2 (6%)	1 (3%)
26-35%	36	14 (39%)	5 (14%)
36-40%	13	1 (8%)	7 (54%)
41-45%	10	2 (20%)	5 (50%)
> 45%	129	0	2 (2%)

Hare JL et al. Heart 2008

3D QUANTITATION OF LV FUNCTION Not Just Volumes and Ejection Fraction

LV MASS

3D QUANTITATION OF LV MASS LV Mass Assessment vs MRI

×1	r	SEE (g)	р	Bias	Width Limit (g)
M-mode (ASE)	0.4	47	0.03	14	188
2D Area-length (ASE)	0.2	40	0.3	6	168
RT3DE	0.9	13	<0.0001	-2	50

3D QUANTITATION OF LV MASS Test-retest Comparison of Sequential Measurements

3D QUANTITATION OF LV FUNCTION Not Just Volumes and Ejection Fraction

3D Strain

Normal Subject

Ischemic Heart Disease

3D ECHO TO QUANTITATE VENTRICULAR CAVITY SIZE AND FUNCTION Conclusions

- 3DE provides more accurate volumetric information than conventional 2D echo in patients in whom LV quantification is critical for management;
- 3rd generation 3D echo scanners are equipped with new semiautomated contour detection programs that work fairly rapid with limited operator interaction;
- Volume quantification with 3D works when the operator knows how to do it and its limitations;
- These novel algorhythms compete in accuracy with cardiac magnetic resonance, but only 3DE can be used in every patient at his/her patient bedside.

EUROECHO 2010 EUROPEAN SOCIETY OF CARDIOLOGY®

