

RESPIRATORY MANEUVERS IN ECHOCARDIOGRAPHY - CLINICAL APPLICATIONS -

CARMEN GINGHINA, MD, PhD, FESC, FACC

DURING ECHOCARDIOGRAPHIC EXAM, RESPIRATION INDUCES CYCLIC PHYSIOLOGICAL CHANGES OF INTRACARDIAC HAEMODYNAMICS

RELATED TO VARIATION IN

- INTRATHORACIC AND INTRAABDOMINAL PRESSURE
- SYSTEMIC AND PULMONARY VENOUS RETURN
- INTRAPERICARDIAL PRESSURE, PERICARDIAL CONSTRAINT
- INTERDEPENDENCE BETWEEN CARDIAC CHAMBERS

WITH INSPIRATION – INTRATHORACIC AND INTRA PERICARDIAL PRESSURES DECREASE

- THIS RESULTS IN AUGMENTED RV FILLING AND STROKE VOLUME
- AND A COMPENSATORY DECREASE IN LV STROKE VOLUME WHICH OCCURS IN EARLY INSPIRATION

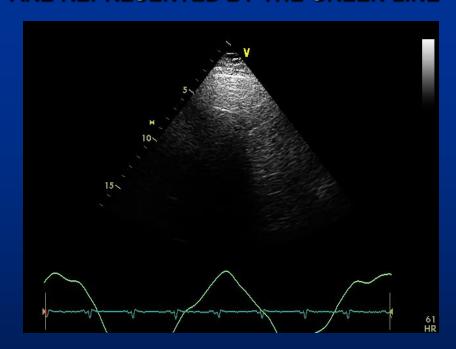
WITH EXPIRATION – INTRATHORACIC AND INTRA PERICARDIAL PRESSURES INCREASE

- RESULTING IN MILD DECREASE IN RV DIASTOLIC FILLING
- AND A SUBSEQUENT INCREASE IN LV FILLING

THE IMPACT OF RESPIRATORY CYCLE

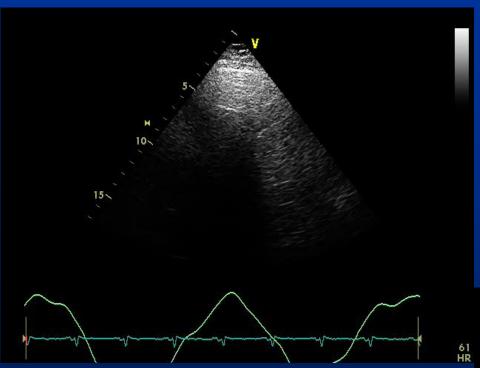
GENERAL ECHOCARDIOGRAPHIC DATA

2 D – ECHO


- IMAGE QUALITY
- MEASUREMENTS

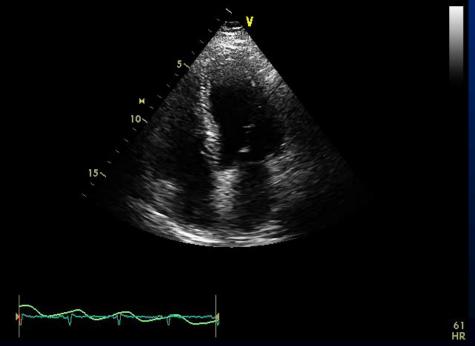
DOPPLER

ECHO EVALUATION OF HAEMODYNAMIC PARAMETERS


ECHO DIAGNOSIS OF C-V DISEASES

THE RESPIRATORY MOVEMENTS ARE REPRESENTED BY THE GREEN LINE

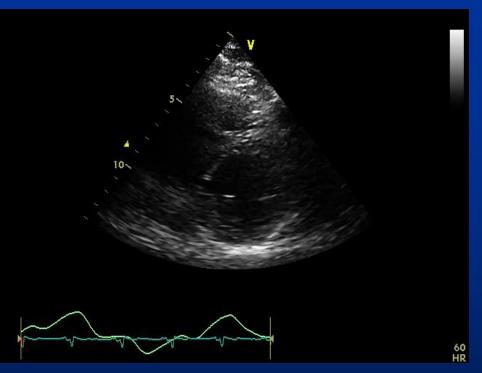
TT APICAL 4 CHAMBER VIEW DURING NORMAL RESPIRATION


DURING **INSPIRATION**PULMONARY INTERFERENCE
DOES NOT ALLOW
THE VISUALISATION
OF CARDIAC STRUCTURE

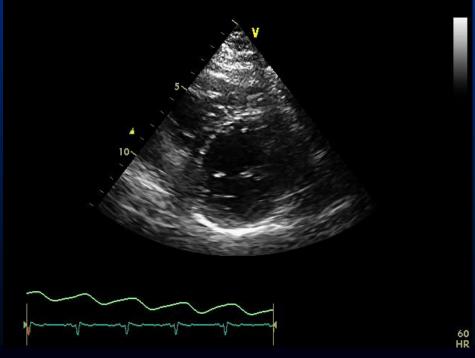


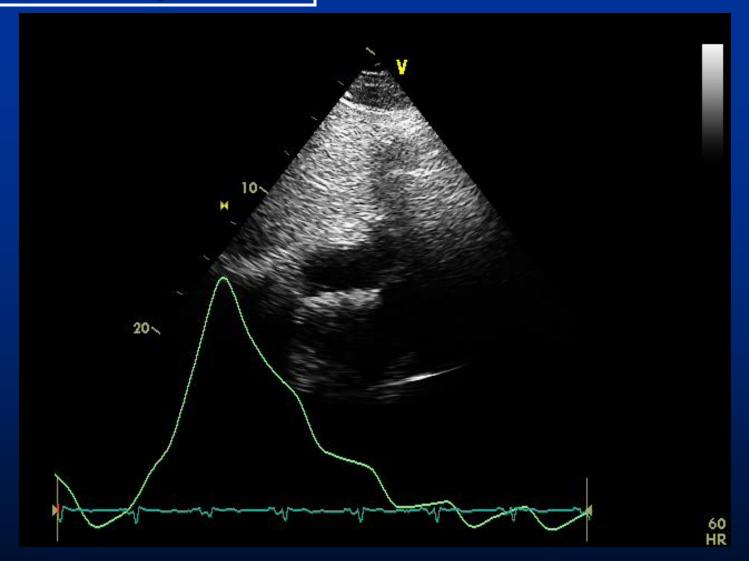
DURING HELD END EXPIRATION
(LUNG DEFLATION)
THERE IS A SIGNIFICANT
IMPROVEMENT IN THE QUALITY
OF ECHO IMAGE

TT APICAL 4 CHAMBER VIEW DURING NORMAL RESPIRATION


DURING **INSPIRATION**PULMONARY INTERFERENCE
DOES NOT ALLOW
THE VISUALISATION
OF CARDIAC STRUCTURE

TTA SHORT AXIS VIEW
DURING NORMAL RESPIRATION


DURING **INSPIRATION**THE HEART MOVES MEDIALLY
THE EXCESSIVE TRANSLATIONAL
MOTION INTERFERES
WITH THE VISUALISATION
OF CARDIAC STRUCTURES



EXCESSIVE TRANSLATIONAL MOTION
CAN BE AVOIDED
BY ACQUIRING IMAGES
DURING HELD END - EXPIRATION

TTA SHORT AXIS VIEW DURING NORMAL RESPIRATION

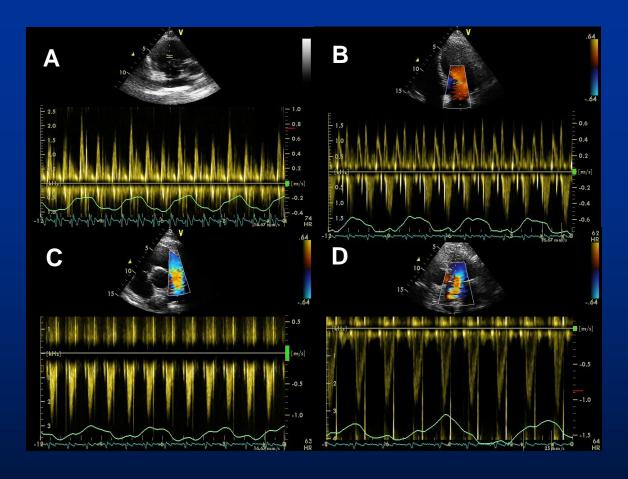
DURING **INSPIRATION**THE HEART MOVES MEDIALLY
THE EXCESSIVE TRANSLATIONAL
MOTION INTERFERES
WITH THE VISUALISATION
OF CARDIAC STRUCTURES

SUBCOSTAL VIEW

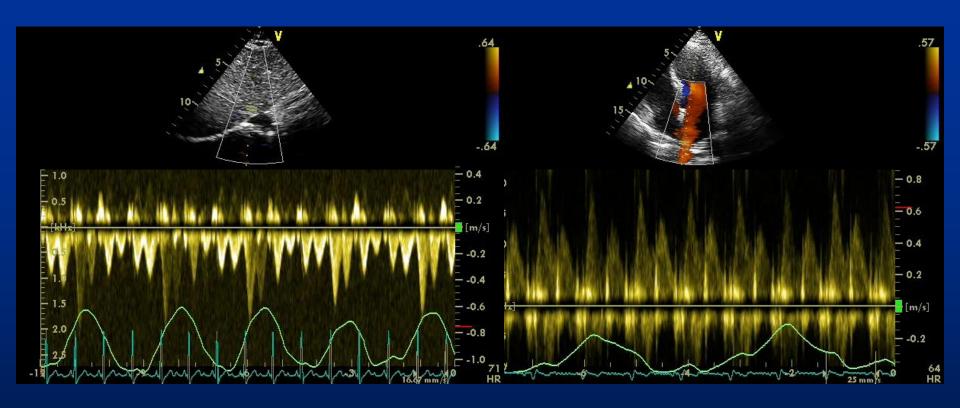
INSPIRATION BRINGS THE DIAPHRAGM DOWN IMPROVING THE IMAGING OF THE HEART

2 D – MEASUREMENTS

AN INSPIRATORY REDUCTION IN LV END DIASTOLIC DIMENSION ASSESSED BY M-MODE ECHO WAS FOUND IN NORMAL SUBJECTS

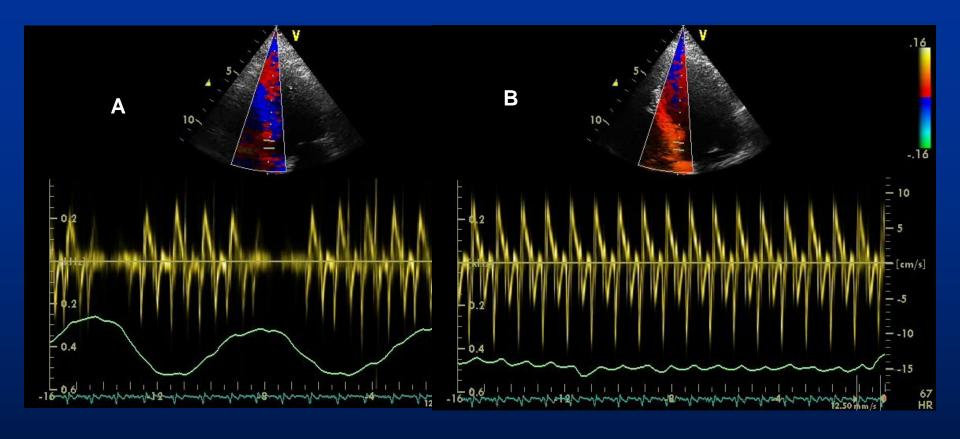


THE INPIRATORY DIMENSIONS CAN BE SMALLER ALONG THE M-MODE CURSOR THAN THROUGH THE CENTER OF THE SHORT AXIS AREA BECAUSE OF **MEDIALLY MOVEMENT** OF THE HEART


AN INSPIRATORY DECREASE OF LV END DIASTOLIC VOLUME AS A CONSEQUENCE OF **PRELOAD REDUCTION**AND **INCREASED AFTERLOAD**

DOPPLER – FLOW VELOCITY PATTERN

PHYSIOLOGICAL VARIATION OF THE VELOCITY ACROSS THE TRICUSPID VALVE (25% OR LESS), MITRAL V (15%), PULMONARY AND AORTIC V (LESS THAN 10%) DURING QUIET RESPIRATION IN A NORMAL HEART


DOPPLER – FLOW VELOCITY PATTERN

PHYSIOLOGICAL VARIATIONS OF THE VELOCITY ACROSS SUPRAHEPATIC VEINS, AND PULMONARY V DURING QUIET RESPIRATION IN A NORMAL HEART

- MARKED RESPIRATORY CHANGES: INCREASE IN S, D AND RETROGRAD A FLOW
- → MINIMAL RESPIRATORY VARIATION

DOPPLER – MEASUREMENTS

SEPTAL ANNULAR VELOCITIES MEASURED BY TDI DURING QUIET RESPIRATION AND DURING END-EXPIRATORY APNEA

THE SHIFT IN HEART POSITION DURING RESPIRATION IN RELATION TO A FIXED DOPPLER SAMPLE VOLUME LEADS TO INACCURATE RECORDING / AND ERRORS IN VELOCITIES MEASUREMENT

WHICH DISAPPEAR DURING END-EXPIRATORY APNEA

WHEN, WHY AND HOW TO USE NORMAL RESPIRATION DURING AN ECHO STUDY

WHEN	WHY	HOW
Poor 2D image quality	To optimize the quality of the echo view	Expiration: better parasternaland often apical access to the heart Inspiration: brings the diaphragm down improving access to the heart
M-mode measurements of the LV or 2D-quantitation	To avoid measurement errors due to excessive translational motion of the heart	Quiet respiration/held end- expiration
Doppler measurements (flow/tissue velocities)	To avoid measurement errors due to excessive translational motion of the heart	End-expiratory apnea

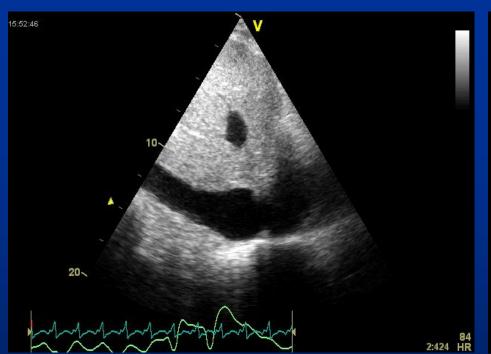
FOR GOOD VISUALISATION AND MEASUREMENTS
OF ECHO IMAGING

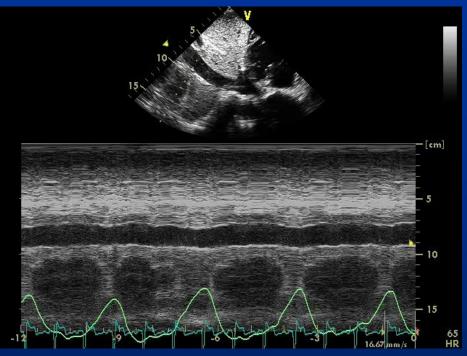
THE IMPACT OF RESPIRATORY CYCLE

GENERAL ECHOCARDIOGRAPHIC DATA

ECHO EVALUATION OF HAEMODYNAMIC PARAMETERS

RA PRESSURE SYSTOLIC PAP LV DIASTOLIC FUNCTION


ECHO DIAGNOSIS OF C-V DISEASES


ESTIMATION OF RAPRESSURE

THE DIAMETER OF IVC DECREASES IN INSPIRATION AND THE COLLAPSIBILITY INDEX CORRELATES WITH RA PRESSURE

COLLAPSIBILITY	HIGH	> 55%	NORMAL	35-50%	LOW	<35%
IVC DIAMETER	SMALL	< 1,7 cm	NORMAL	1,7-21 cm	LARGE	>2,1 cm
RA PRESSURE	< 5 m	ımHg	5 m	mHg	10-20	mmHg

DEFINING COLLAPSIBILITY AS/AND IVC AS... WE CAN ESTIMATE RA PRESSURE

2D, M MODE ECHO WITH ECG SINCRONIZATION FROM SUBCOSTAL VIEW

THERE IS NO RESPIRATORY VARIATION OF IVC DIAMETER INDICATING INCREASED RA PRESSURE IN A PT. WITH DILATED CARDIOMYOPATHY AND SEVERE PH

EVALUATION OF SYSTOLIC PAP

RESPIRATORY VARIATION IN **SVC SYSTOLIC FORWARD** FLOW MAY BE A USEFUL DOPPLER INDEX FOR THE ASSESSEMENT OF SEVERITY OP PH IN PTS WITH **CHRONIC OBSTRUCTIVE PULMONARY DISEASE** THAT CANNOT BE ASSESSED BY CONVENTIONAL TTE (BECAUSE OF EMPHYSEMA OR MEDIASTINAL DEVIATION)

ASSESSMENT OF LV DIASTOLIC FUNCTION

SMALL CHANGES (<15%) OCCUR IN MITRAL INFLOW DOPPLER PATTERN IN HEALTHY SUBJECTS WITH SPONTANEOUS RESPIRATION

REDUCED E/A RATIO (<1) ON INSPIRATION
COULD CHARACTERIZE AN **ABNORMAL LV DIASTOLIC FUNCTION**(OR JUST PSEUDO-N FILLING UNMASKED BY INSPIRATION)

AN ABSOLUTE DECREASE IN THE MITRAL
E/A RATIO AT STANDARDIZED **VALSALVA MANEUVER** CAN **PREDICT** AN ELEVATED LV FILLING PRESSURE WITH A
SPECIFICITY OF 100%

THE **VALSALVA MANEUVER** CAN **UNMASK**THE PRESENCE OF ELLEVATED FILLING PRESSURE IN
PTS. WITH A BASELINE PSEUDO-N RELLAXATION PATTERN

TTE, APICAL 4C VIEW, MITRAL INFLOW DOPPLER PATTERN

MITRAL INFLOW PATTERN APPEARS "NORMAL" AT REST BUT DURING VALSALVA MANEUVER:

THE E/A RATIO DECREASES (1, 3 € 6)
THE PEAK A VELOCITY INCREASES (60 75 m/s)
UNMASKING THE IMPAIRED RELAXATION PATTERN

WHEN, WHY AND HOW TO USE NORMAL RESPIRATION OR VALSALVA MANEUVER DURING UN ECHO STUDY

WHEN	WHY	HOW
Estimation of right atrial (RA) pressure	To elicit the inspiratory response of the inferior vena cava in order to assess the collapsibility index	Inspiration/brief sniff
Evaluation of systolic pulmonary artery pressure in patients with stable, chronic COPO that cannot been assessed by conventional TTE	To assess the respiratory variation in superior vena cava (SVC) systolic forward flow	Normal respiration
Assessment of left ventricular diastolic function	To unmask elevated LV filling pressure in patients with normal or reduced LV systolic function and	Standardized Valsalva maneuver
	pseudo-normal filling pattern at baseline	decrease in the mitral E/A ratio of 0.5 or more during Valsalva
	impaired relaxation pattern at baseline	increase in peak A wave velocity during Valsalva

IN CHARACTERIZING CARDIAC FUNCTION PARAMETERS

THE IMPACT OF RESPIRATORY CYCLE

GENERAL ECHOCARDIOGRAPHIC DATA

ECHO EVALUATION OF HAEMODYNAMIC PARAMETERS

ECHO DIAGNOSIS OF SOME C-V DISEASES

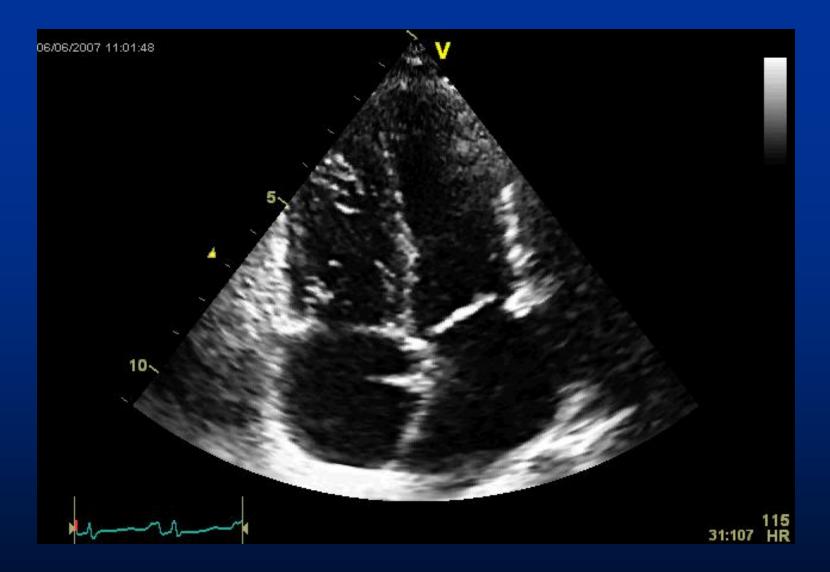

PERICARDIAL DISEASE
RESTRICTIVE CARDIOMYOPATHY
HYPERTROPHIC CARDIOMYOPATHY
MITRAL VALVE PROLAPS
ATRIAL SHUNT
TRICUSPID REGURGITATION

CARDIAC TAMPONADE

THE NORMAL EFFECTS OF RESPIRATION ARE **ACCENTUATED**BECAUSE THE INCREASED PERICARDIAL PRESSURE PRODUCES
RECIPROCAL RESPIRATION CHANGES IN THE R AND LV VOLUME AND DYNAMICS

ECHO DEMONSTRATES **THE EXAGERATED PHASIC** VARIATION IN **CARDIAC VOLUME AND FLOW**:

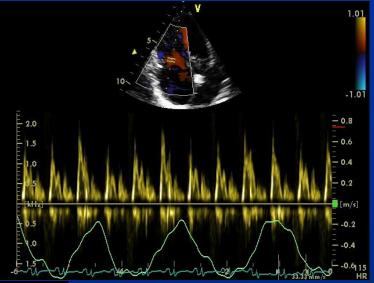
- DURING EXPIRATION THE DIASTOLIC COLLAPS OF THE RA/OR RV IS EXAGGERATED
- DURING INSPIRATION THE EARLY RV DIASTOLIC FILLING IS AUGMENTED (>25%)
 WHILE LV DIASTOLIC FILLING DIMINISHES (> 15%)

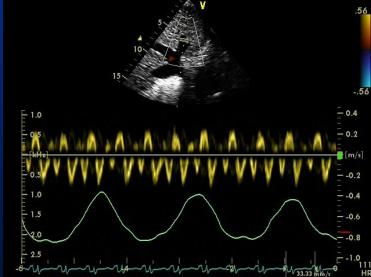


THE INTERMITENT DIASTOLIC COLLAPS OF THE FREE WALLS OF RA AND RV EXAGGERATED DURING EXPIRATION IN A CARDIAC TAMPONADE PT.

CONSTRICTIVE PERICARDITIS

THE RIGID PERICARDIUM IMPEDES THE TRANSMISION OF INTRATHORACIC PRESSURE TO CARDIAC CHAMBERS AND INCREASES INTERVENTRICULAR INTERACTION


ABNORMAL HAEMODYNAMIC IS REFLECTED IN **DOPPLER DATA**: INTRACARDIAC; HEPATIC, PULMONARY VEIN; PROXIMAL
AORTIC FLOW



INCREASED INTERVENTRICULAR INTERACTION IN CONSTRICTIVE PERICARDITIS

WITH RV VOLUME INCREASE THERE IS A CORRESPONDING DECREASE IN LV VOLUME DURING INSPIRATION

CONSTRICTIVE PERICARDITIS

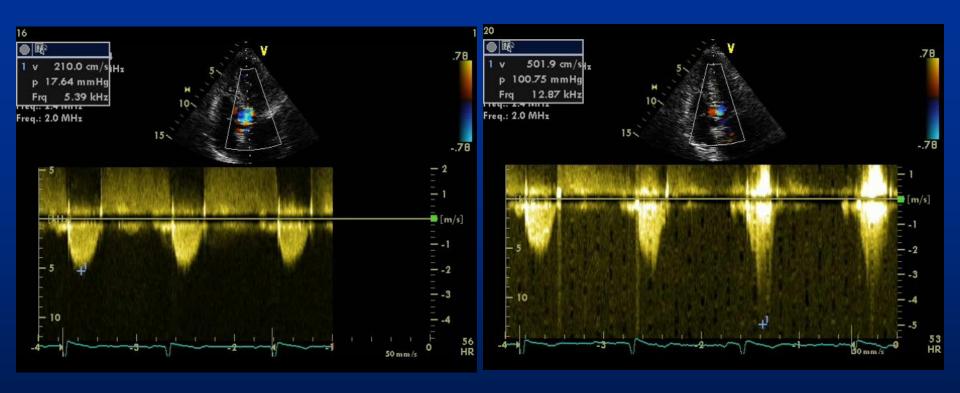
RESPIRATORY VARIATION OF

- A TRANS-MITRAL DOPPLER FLOW: A DECREASE OF PEAK VELOCITY (>25%)
- B TRANS-TRICUSPIDIAN FLOW: AN INCREASE OF PEAK VELOCITY DURING INSPIRATION
- C HEPATIC VEIN FLOW: AN INCREASE OF A WAVE DURING EXPIRATION

RESTRICTIVE CARDIOMYOPATHY

COMPARISON IN RESPIRATORY CHANGES

	RCM	СР
Mitral inflow	No respiration variation of mitral inflow E wave velocity, IVRT	Inspiration: decreased inflow E wave velocity, prolonged IVRT
	E/A ratio >2, short DT, diastolic regurgitation	Expiration : opposite changes, short DT, diastolic regurgitation
Pulmonary vein	Blunted S/D ratio (0.5), prominent and prolonged AR No respiration variation, D wave	S/D ratio = 1, Inspiration : decreased pulmonary vein S and D waves Expiration : opposite changes
Tricuspid inflow	Mild respiratory variation of tricuspid inflow E wave velocity, E/A ratio >2, TR peak velocity, no significant respiration change Short DT with inspiration, diastolic regurgitation	Inspiration: increased tricuspid inflow E wave velocity, increased TR peak velocity Expiration: opposite changes Short DT, diastolic regurgitation
Hepatic veins	Blunted S/D ratio, increased inspiratory reversals	Inspiration: minimally increased hepatic veins S and D Expiration: decreased diastolic flow/increased reversals


RESPIRATORY VARIATIONS ARE DECREASED IN RCM
BECAUSE VENTRICULAR FILLING IS LIMITED
BY THE NONCOMPLIANT RESTICTIVE MYOCARDIUM

HYPERTROPHIC CARDIOMYOPATHY

THE VALSALVA MANEUVER **CAN UNMASK LATENT GRADIENTS** IN PTS. WITHOUT RESTING OBSTRUCTION

DURING THE STRAIN PHASE OF VALSALVA DUE TO DECREASE IN PRELOAD, END DIASTOLIC LV VOLUME AND AFTERLOAD

- SAM OCCURS **EARLIER** IN SYSTOLE
- MITRAL-SEPTAL CONTACT LASTS LONGER
- AND LV OUTFLOW TRACT GRADIENT INCREASES

TTE, 5 C VIEW, DOPPLER LV OUTFLOW PATTERN

68 YEAR-OLD FEMALE, HYPERTROPHIC CARDIOMYOPATHY

A – RESTING CW TRACE REVEALED A LOW LV OUTFLOW TRACT PEAK VELOCITY

B – DURING VALSALVA MANEUVER, PEAK VELOCITY AND GRADIENT INCREASES

MITRAL VALVE PROLAPS

DUE TO LV VOLUME DECREASE DURING VALSALVA MANEUVER
THE **REGURGITATION INCREASES**AND **STARTS EARLIER** IN SYSTOLE

ATRIAL SHUNT

THE VALSALVA MANEUVER

MAY ENHANCE ATRIAL LEVEL SHUNTING

DURING RELEASE PHASE (III)

IN PATENT FORAMEN OVALE

MAKING THE SHUNT DETECTABLE

(USING CONTRAST TEE FOR A BETTER SENSITIVITY)

TRICUSPID REGURGITATION

THE MÜLLER MANEUVER
(PERFORMED BY FORCIBLY INSPIRING WHILE THE NOSE IS HELD CLOSED AND THE MOUTH IS SEALED FOR ABOUT 10 SECONDS)

AUGMENTS THE TRICUSPID REGURGITATION
(BECAUSE OF INCREASEDING RV FILLING)

WHEN, WHY AND HOW TO USE NORMAL RESPIRATION OR PROVOCATIVE MANEUVERS DURING AN ECHO STUDY

WHEN	WHY	HOW
Cardiac tamponade	To assess respiratory variation in cardiac volumes and flow	Normal respiration
Constrictive pericarditis	To assess the respiratory variation in mitral, tricuspid, pulmonary and hepatic vein flow	Normal respiration
Restrictive cardiomyopathy	To assess the respiratory variation in mitral, tricuspid, pulmonary and hepatic vein flow	Normal respiration
Detection of Patent Foramen Ovale by TTE or TEE	To assess the appearence of contrast in the LA shortly after injection of saline contrast into an upper extremity vein, with good opacification of the RA	Normal respiration within 3 cardiac cycles after injection of saline contrast Valsalva maneuver during the release phase
Hypertrophic cardiomyopat with mild or absent resting obstruction	To unmask latent gradient/to increase LVOT gradient	Valsalva maneuver during the release phase

IN VARIOUS CARDIAC DISORDERS

CONCLUSION

USING NORMAL RESPIRATORY PHASES AND PROVOCATIVE RESPIRATORY MANEUVERS CAN BE VERY USEFUL IN CARACTERIZING NORMAL CARDIAC PARAMETERS AND VARIOUS CARDIAC DISORDERS

THE EXTRA TIME REQUIRED TO PERFORM THESE MANEUVERS IS WORTHWHILE AND WELL COMPENSATED BY THE SIGNIFICANT INCREASE IN EXAMINATION QUALITY AND DIAGNOSIS ACCURACY