

MITRAL REGURGITATION

Prof. Patrizio LANCELLOTTI, MD, PhD CHU Sart Tilman, Heart Valve Disease Clinic, University of Liège, Belgium

ANATOMY

MITRAL VALVE ANNULUS LEAFLETS **CHORDAE** PAPILLLARY **MUSCLES**

CYBERFIBER, INC.

New York University

ANNULUS **LEAFLETS CHORDAE** PAPILLARY **MUSCLES**

FUNCTION

LEFT ATRIUM

LEFT VENTRICLE

VALVE ANALYSIS

Etiology

The Cause of Valve Disease

Lesions

The Result of the Disease Process

Dysfunction

The Result of the Lesions

Quality of tissue (Pliability of leaflet)

Quantity of tissue

Calcifications (Leaflet, LV wall)

DYSFUNCTION: CARPENTIER'S CLASSIFICATION

TYPE I : NORMAL LEAFLET MOTION - ANNULAR DILATION - LEAFLET PERFORATION

TYPE II : EXCESSIVE LEAFLET MOBILITY - PROLAPSE - FLAIL

TYPE III : REDUCED LEAFLET MOBILITY OR MOTION - CHORDAE SHORTENING, LEAFLET THICKENING - INCOMPLETE COAPTATION

ETIOLOGY

MECHANISM

NON-ISCHEMIC

ISCHEMIC

ORGANIC

Rheumatic, prolapse,flail leaflet, endocarditis, etc Ruptured PM

FUNCTIONAL

Cardiomyopathy

Post-MI

DEGENERATIVE (Barlow, FED, Marfan) ballooning, prolapse, flail

Mitral annulus is saddle shaped Parasternal Long Axis View

Barlow disease

Fibroelastic Deficiency

Thickened (> 5mm), Redundant tissue

FUNCTIONAL MR

Normal leaflets, Annular dilation, LV dilation + spherical + Altered geometry + PMs displacement + WM abnormalities

4-Chamber View at 0°

Type II P2 (long axis 130-150°)

Type II P2 (bi commissural 45-60°)

Post Commissure – P3

Type II P3

Anterior commissure – P1

Mitral valve analysis: recommendations

- (1) TTE is recommended as the first-line imaging modality for mitral valve analysis.
- (2) TEE is advocated when TTE is of non-diagnostic value or when further diagnostic refinement is required.
- (3) 3D-TEE or TTE is reasonable to provide additional information in patients with complex mitral valve lesion.
- (4) TEE is not indicated in patients with a good-quality TTE except in the operating room when a mitral valve surgery is performed.

VENA CONTRACTA WIDTH

The narrowest portion of the MR jet downstream from the orifice

Limitations

- Lateral resolution
- Phasic changes
- Multiple jets
- Non-circular orifice
- 2 orthogonal planes, Color sector as narrow as possible
- Zoom to optimize visualization
- Maximal lateral and temporal resolution
- Mild MR < 0.3 cm, Severe MR \ge 0.7 cm

VENA CONTRACTA WIDTH

PISA METHOD

Optimize 2-D color
 Zoom or RES
 Shift the color scale
 Measure the PISA
 MR CW Doppler
 Calculate mitral ERO/RV

BENEFITS

1. Less affected by hemodynamic factors

- 2. Etiology of MR or Other valve disease do not affect ERO calculation
- 3. Can be used with eccentric jets

Integrating indices of MR severity

Parameters	Mild	Moderate	Severe
<i>Qualitative</i> Mitral valve morphology Colour flow MR jet	Normal/Abnormal Small, central jets	Normal/Abnormal Intermediate	Flail leaflet/ ruptured PMs Very large central jet or eccentric jet adhering, swirling and
Flow convergence zone CW signal of MR jet	No or small Faint/Parabolic	Intermediate Dense/Parabolic	reaching the posterior LA wall Large Dense/Triangular
Semi-quantitative VC width (mm) Pulmonary vein flow Mitral inflow TVI mit/TVI Ao	< 3 Systolic dominance A wave dominant <1	Intermediate Systolic blunting Variable Intermediate	\geq 7 (>8 for biplane) Systolic flow reversal E wave dominant (>1.5 cm/s) \geq 1.4
<i>Quantitative</i> EROA (mm ²) R Vol (ml)	< 20 < 30	20-29 ; 30-39! 30-44 ; 45-59!	≥ 40 ≥ 60

+ LV and LA sizes + sPAP

CONSEQUENCES

- LV DIMENSION AND EF
- LV SHAPE, LA SIZE
- PULMONARY PRESSURES
- < 50 mmHg at rest
- < 60 mmHg at exercise
- VENTRICULAR FUNCTION ?

- DYNAMIC COMPONENT AT EXERCISE

WHAT TO FOLLOW IN AN ASYMPTOMATIC PATIENT WITH NORMAL LV FUNCTION

Moderate MR → clinical every year + echo every 2 years Severe MR → clinical every 6 months + echo every 1 year * or if EF 60-65% (ESD 40-45 mm) → echo every 6 months

- PROGRESSION OF MR : MARKED INDIVIDUAL DIFFERENCES

- PROGRESSION OF LESION :

- NEW FLAIL LEAFLET
- INCREASE OF ANNULUS SIZE

- EVOLUTION OF LV END-SYSTOLIC DIMENSION OR VOLUME

- LV EJECTION FRACTION
- LA SIZE AND AREA
- PULMONARY SYSTOLIC PRESSURE
- EXERCISE CAPACITY

- OCCURRENCE OF ATRIAL ARRHYTHMIAS

European Journal of Echocardiography doi:10.1093/ejechocard/jeq031

European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease)

Patrizio Lancellotti (Chair)¹*, Luis Moura², Luc A Pierard¹, Eustachio Agricola³, Bogdan A. Popescu⁴, Christophe Tribouilloy⁵, Andreas Hagendorff⁶, Jean-Luc Monin⁷, and Luigi Badano⁸, and Jose L. Zamorano⁹ on behalf of the European Association of Echocardiography