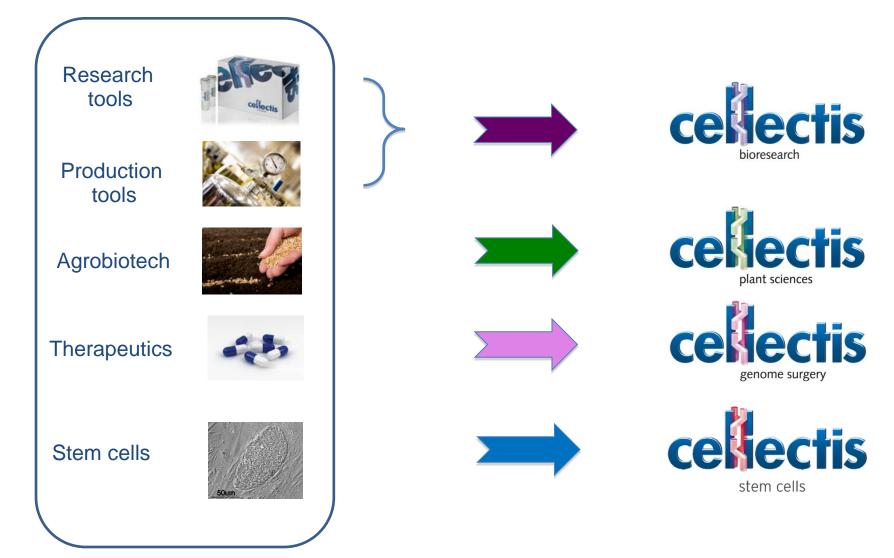


Proarrhythmic modeling in pluripotent stem cell-derived cardiomyocytes No conflict Of Interest Peter Sartipy, Ph.D. The Frontiers in CardioVascular Biology 2012 meeting London, 30 March - 1 April

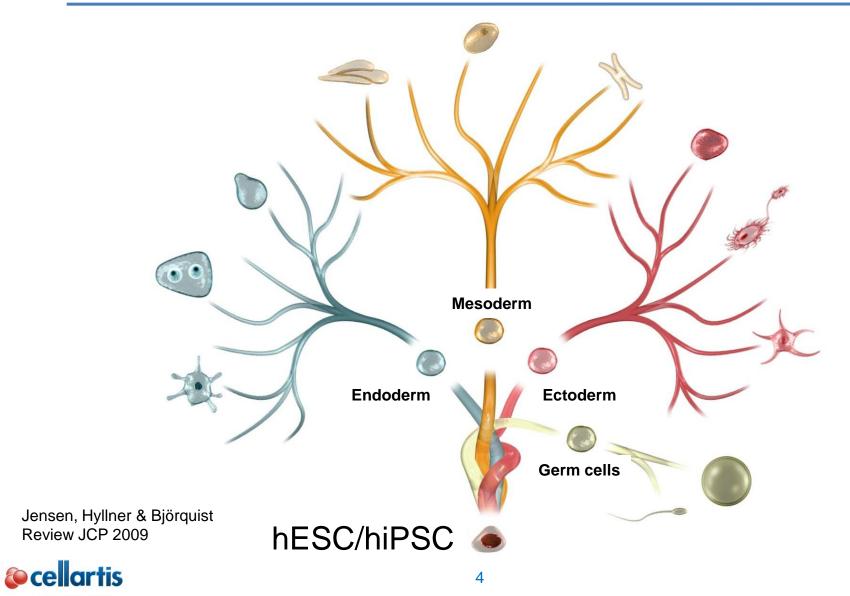
Forward Looking Statement

This communication expressly or implicitly contains certain forward-looking statements concerning Cellectis SA and its business. Such statements involve certain known and unknown risks, uncertainties and other factors, which could cause the actual results, financial condition, performance or achievements of Cellectis SA to be materially different from any future results, performance or achievements expressed or implied by such forward-looking statements. Cellectis SA is providing this communication as of this date and does not undertake to update any forward-looking statements contained herein as a result of new information, future events or otherwise.

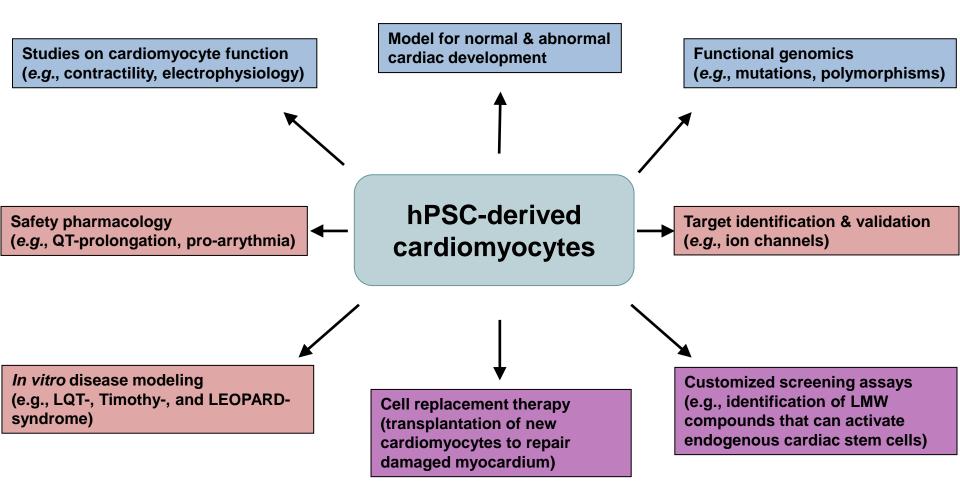


ectycell

Cellectis group

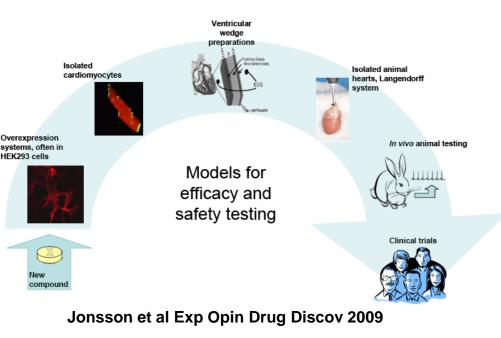


cellartis


ectycell

The potential of human pluripotent stem cells

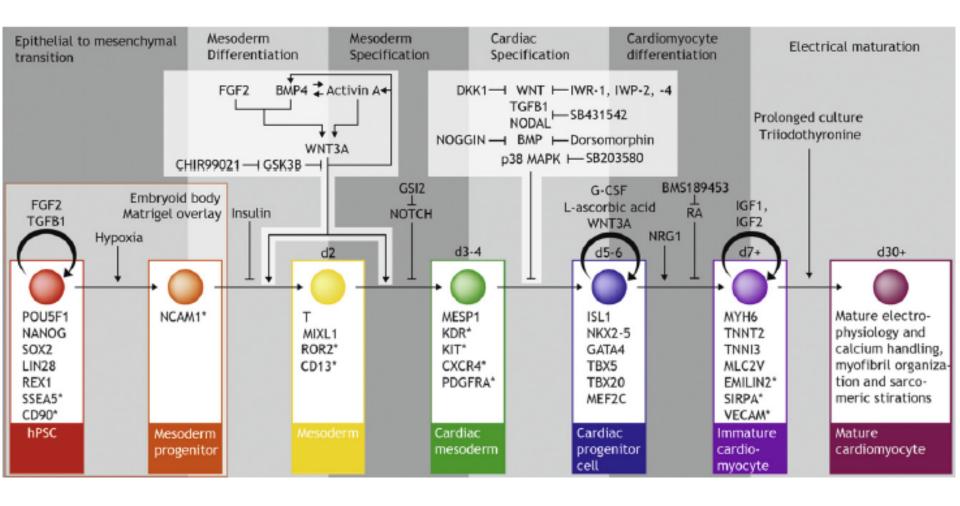
Applications for human cardiomyocytes



ectycell

Models for efficacy and safety testing during preclinical drug discovery

- **Cell lines** (*e.g.*, HL-1, transformed HEK and CHO cells)
- Primary cardiomyocytes (*e.g.*, rat, guinea pig, rabbit, dog)
- Engineered cardiac tissue (e.g., dissociated embryonic chicken or neonatal rat hearts)
- Explanted hearts and cardiac tissue (*e.g.,* dog and guinea pig)
- Small animal models (*e.g.*, rabbit, guinea pig, rat, mice)
- Large animal models (*e.g.*, dog, monkey, pig)



Urgent need for human cardiomyocytes!

Factors involved in cardiac hPSC differentiation

cellartis

Burridge et al Cell Stem Cell 2012

Interline variability in cardiac differentiation

- Genetic background
- Derivation method
- Culture conditions and passage number
- Efficacy of reprogramming and cell type of origin
- Levels of expression of endogenous growth factors/receptors
- Epigenetic status
- Kinetics of differentiation

Optimization of exogenous and endogenous signaling will

ultimately determine the efficiency of cardiac differentiation

Molecular and functional properties of hPSC-

derived cardiomyocytes

- Express cardiac markers and ion-channels (*e.g.*, hERG, L-type calcium channel, voltage-gated potassium channels, voltage-gated sodium channels, funny channels).
- Display ventricular-, atrial-, and nodal-like action potentials.
- Functional blocking of ion-channels:
 - hERG-channel blockers (e.g., E-4031, Astemizole, Cisapride, Terfenadine)
 - Funny-channels (e.g., Zatebradine)
 - Sodium channels (e.g., lidocain)
 - Calcium channels (e.g., verapamil)
- Responsive to pharmacological stimuli
 - β-Adrenergic stimulation (e.g., isoprotenerol, adrenalin)
 - α -Adrenergic stimulation (e.g., phenylephrine)
 - Muscarinic stimulation (e.g., carbachol, acetylcholine, atropin)

cellartis

Developmental status of hPSC-derived CMs

hPSC-derived CMs are in some aspects immature and display a fetal phenotype:

- > Spontaneous contraction (large Na⁺ current and I_f , low I_{K1})
- Fetal-like electrophysiological properties (lower upstroke velocities, relatively positive resting membrane potential)

Fetal-like structural properties (low amounts of myofibrils, unaligned and randomly distributed)

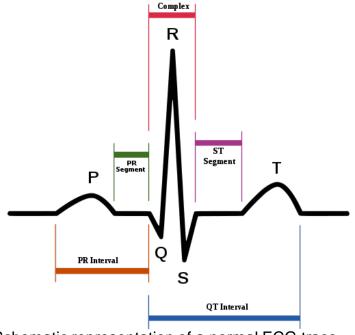
Fetal-like Ca²⁺ handling and SR status

The fetal phenotype may:

Reduce the general applicability of current hPSC-derived CMs for in vitro drug testing

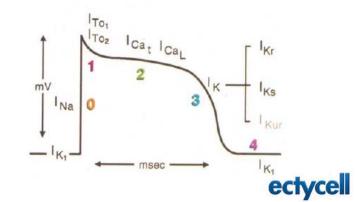
> Be beneficial for cell transplantation in regenerative medicine

cellartis



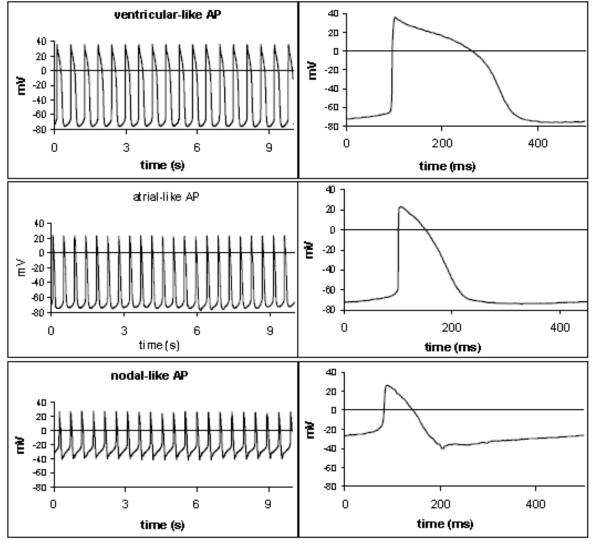
Cardiotoxicity endpoints

- Biomarker of life threatening ventricular arrhythmia
 - QT prolongation
 - hERG
 - Other risks
- Predictive biomarkers of drug-induced myocardial injury
 - -Troponin
- Contractility

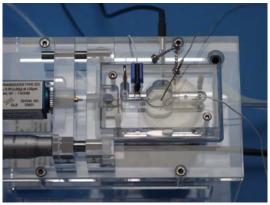

cellartis

- morphological changes, hypertrophy
- Ca²⁺ dysregulation

QRS


Schematic representation of a normal ECG trace

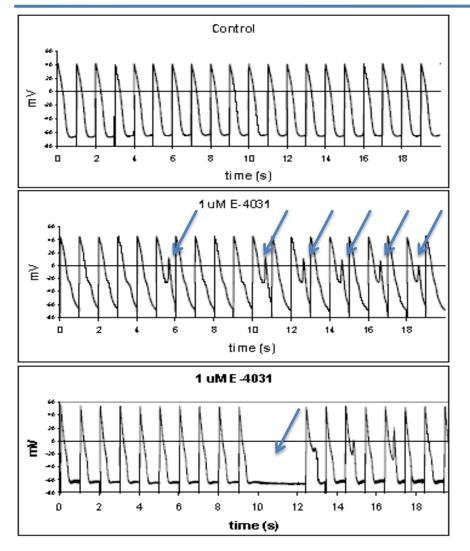
Action potential recordings in hES-CMC[™]


Demonstrating the presence of cardiac phenotypes

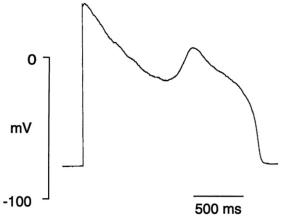
Jonsson et al, Stem Cell Res 2010

cellartis

TAP recordings


AstraZeneca

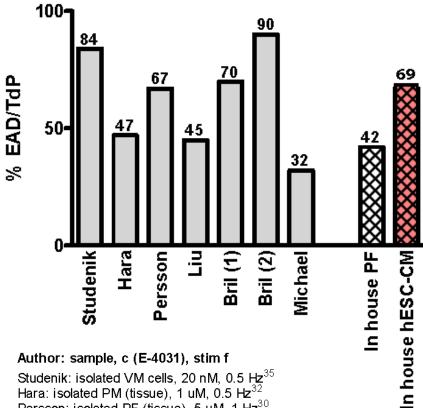
University Medical Center Utrecht, Utrecht, The Netherlands



hERG channel block in hES-CMC[™] causes EADs

EADs (early afterdepolarizations) can result in torsades de pointes, tachycardia, and other arrhythmias

Occurance of EADs in human ventricular cardiomyocytes From: Pelzmann et al 1997 Cardiovasc Res


13

University Medical Center Utrecht, Utrecht, The Netherlands

Incidence of EADs or TdP after E-4031 administration Direct comparison of hES-CMC[™] with established models

Studenik: isolated VM cells, 20 nM, 0.5 Hz³³ Hara: isolated PM (tissue), 1 uM, 0.5 Hz³² Persson: isolated PF (tissue), 5 uM, 1 Hz³⁰ Liu: Langendorff heart, 0.5 uM, >1Hz³³ Bril (1): in vivo (methoxamine), 10 ug/kg/min³¹ Bril (2): in vivo (methoxamine), 20 ug/kg/min³⁴ Michael: in vivo (phenylephrine), 10 nmol/kg/min³⁴

In house PF: isolated tissue, 1 uM, 1 Hz In house hESC-CM: cell clusters, 1 uM, 1 Hz

Jonsson et al Stem Cell Res 2010

Method:

Multicellular preparations: a) hES-CMC[™] b) Rabbit PF

TAP (transmembrane action potential) rec.

Electrical pacing at 1 and 2 Hz

1 µM E-4031 (Ikr blocker)

Comparison of I_{Kr} blocking drugs in 5 screening models of pro-arrhythmia

- Moxifloxacin was used as "Negative control" (fourth generation synthetic fluoroquinolone antibacterial agent developed by Bayer AG)
- Tested in 5 different models
 - Chronic AV block (CAVB) dog
 - Methoxamine sensitized rabbit
 - hES-CMC[™]
 - Isolated dog CM
 - Isolated rabbit CM
- TdP and EADs as arrhythmogenic outcome
- Low (therapeutic) concentration: 5-10 μM
- High (supratherapeutic) concentration: 100 μM

L Nalos et al 2012 Br J Pharmacol

University Medical Center Utrecht, Utrecht, The Netherlands AstraZeneca R&D, Mölndal, Sweden Cellartis AB, Göteborg, Sweden NOTOX B.V., DL 's-Hertogenbosch, The Netherlands.

IKr blocking (moxifloxacin): Results & Conclusion

Arrhythmia incidence (TdP/EAD)	Moxifloxacin		Dofetilide/E-4031
	Low dose	High dose	
CAVB dog	0%ª		76% ^h /100% ⁱ
Methoxamine rabbit	0% ^b	17% ^d	83% ^f
hES-CMC	0% ^c	18% ^e	50% ^g
Isolated rabbit CM	23% ^c	33% ^e	63% ^g
Isolated CAVB CM	35% ^c		60% ^g

^a2 mg/kg (10μM), ^b0.1 mg/kg/min (9±3μM), ^c10μM, ^d3 mg/kg/min (107±15μM), ^e100μM, ^f10 μg/kg/min, ^g1μM; ^hOros *et al.*, 2008, ⁱThomsen *et al.*, 2006.

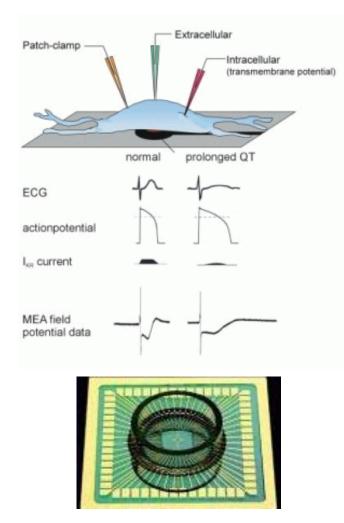
The very sensitive isolated cardiac myocyte assay lacks specificity to discriminate between

safe and unsafe drugs. However, the selective response obtained from the hES-CMC model

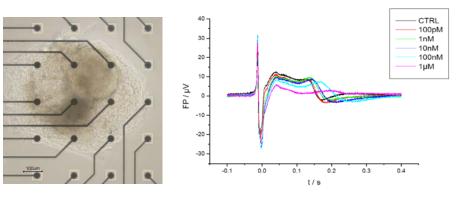
was comparable to the *in vivo* animal models.

> University Medical Center Utrecht, Utrecht, The Netherlands

> NOTOX B.V., DL 's-Hertogenbosch, The Netherlands.

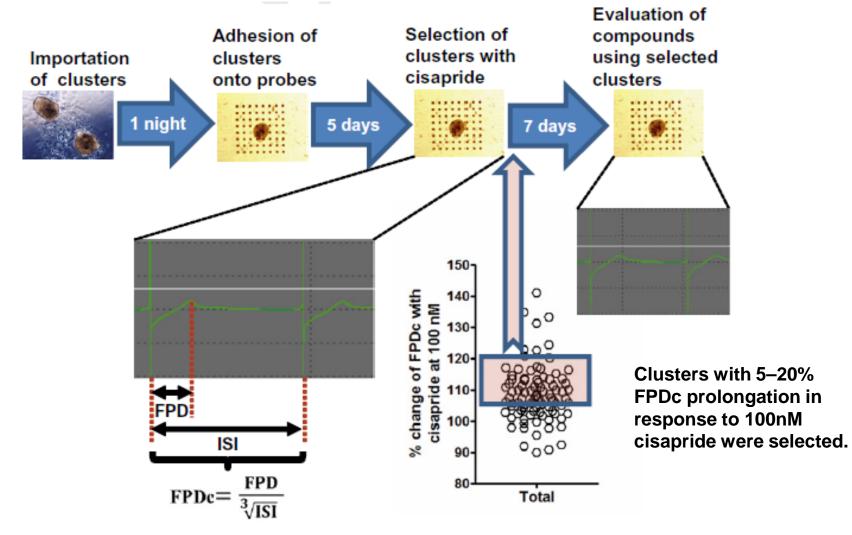


Adapted from Nalos et al, 2012


ectvcel

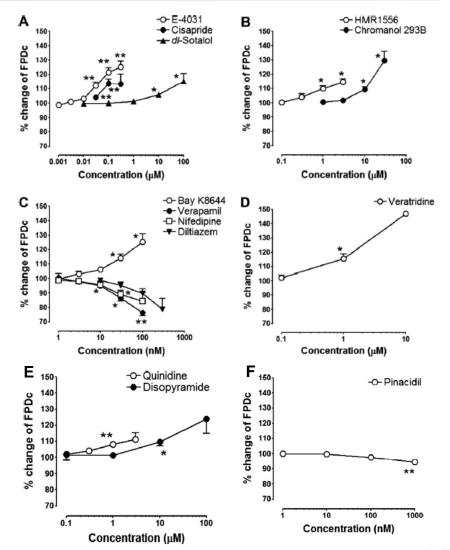
hPSC-derived cardiomyocyte clusters: MEA technology

- Signal retrieval is non invasive
- Field potential measured (QTprolongation, arrhythmia)
- Interpretation is similar to ECG



Pharmacological selection of hES-CMC[™] for assessmentstem cells

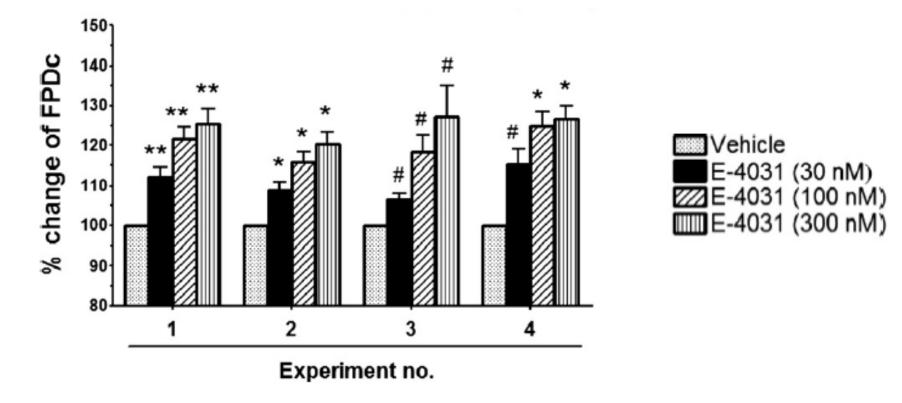
of drug induced QT interval changes


ectycell

Changes in FPDc in hES-CMC[™] treated with reference stem cells compounds

A. hERG channel blockers

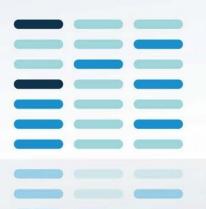
- **B.** I_{Ks} blockers
- **C.** Ca²⁺-channel activator and blockers
- D. Na⁺ channel opener
- E. Class la antiarrhythmic drugs
- **F.** K_{ATP} channel opener


cellartis

19 Adapted from: Yamazaki et al 2011 Toxicol In Vitro

Reproducible results between different experiments and individuals

Experiments 1 and 4, and Experiments 2 and 3 were performed by different persons



- hPSC can be differentiated to CMs with relatively high yield.
- Differences between hESC/hiPSC lines in terms of CM-differentiation efficiency.
- hPSC-CMs display many critical functional properties of human CMs, but in some aspects, hPSC-CMs display a fetal phenotype.
- hPSC-CMs can be used for drug testing. Especially, effects of I_{Kr} blockers can be predicted. Standardization of assays/cells is required.
- More research is needed to achieve the "adult" CM phenotype and to generate preparations of pure ventricular-, atrial-, and nodal-like CMs

tack merci thank you ...

